首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal degradation behavior of poly(4-hydroxybutyric acid) (P(4HB)) was investigated by thermogravimetric and pyrolysis-gas chromatography mass spectrometric analyses under both isothermal and non-isothermal conditions. Based on the thermogravimetric analysis, it was found that two distinct processes occurred at temperatures below and above 350 °C during the non-isothermal degradation of P(4HB) samples depending on both the molecular weight and the heating rate. From 1H NMR analysis of the residual P(4HB) molecules after isothermal degradations at different temperatures, it was confirmed that the ω-hydroxyl chain-end was remained unchanged in the residual P(4HB) molecules at temperatures below 300 °C, while the ω-chain-end of P(4HB) molecules was converted to 3-butenoyl units at temperatures above 300 °C. In contrast, the majority of the volatile products evolved during thermal degradation of P(4HB) was γ-butyrolactone regardless of the degradation temperature. From these results, it is concluded that during the thermal degradation of P(4HB), the selective formation of γ-butyrolactone via unzipping reaction from the ω-hydroxyl chain-end predominantly occurs at temperatures below 300 °C. At temperatures above 300 °C, both the cis-elimination reaction of 4HB unit and the formation of cyclic macromolecules of P(4HB) via intramolecular transesterification take place in addition to unzipping reaction from the ω-hydroxyl chain-end. Finally, the primary reaction of thermal degradation of P(4HB) at temperatures above 350 °C progresses by the cyclic rupture via intramolecular transesterification of P(4HB) molecules with a release of γ-butyrolactone as volatile product. Moreover, we carried out the thermal degradation tests for copolymer of 93 mol% of 4HB with 7 mol% of 3-hydroxybutyric acid (3HB) to examine the effect of 3HB units on thermal stability of P(4HB).  相似文献   

2.
Thermal degradation behaviours of poly(3-hydroxybutyric acid) (P(3HB); bacterial poly[(R)-3-hydroxybutyric acid] and synthetic poly[(R,S)-3-hydroxybutyric acid] samples, were examined under both isothermal and non-isothermal conditions. The inverse of number-average degree of polymerisation for all P(3HB) samples decreased linearly with degradation time during the initial stage of isothermal degradation at a temperature ranging from 170-190 °C. In addition, crotonyl unit was detected in the residual polymer samples as main ω-chain-end. These results indicate that the dominant thermal degradation reaction for P(3HB) is a random chain scission via cis-elimination reaction of P(3HB) molecules. It was found that the presence of either Ca or Mg ions enhances the depolymerisation of P(3HB) molecules, while that Zn ions hardly catalyse the reaction. As a result, a shift of thermogravimetric curves toward the lower temperature regions was observed for the P(3HB) samples containing high amounts of Ca and Mg compounds.  相似文献   

3.
Aliphatic polyesters have attracted industrial attention as environmentally degradable thermoplastics to be used for a wide range of applications. Besides intensive studies on the biodegradability of aliphatic polyesters, understanding of the thermal stability has importance for processing, application, and recycling. The details of thermal degradation processes of five types of aliphatic polyesters; namely, poly(L-lactide), poly(3-hydroxybutyric acid), poly(4-hydroxybutyric acid), poly(delta-valerolactone), and poly(epsilon-caprolactone), were investigated by means of several thermoanalytical techniques under both isothermal and non-isothermal conditions. In this feature article, the thermal degradation behaviors of aliphatic polyesters with different numbers of carbon atoms in the main chain of the monomeric unit are reviewed. In addition, the effects of chain-end structure and residual metal compounds on the thermal degradation processes of aliphatic polyesters consisting of hydroxyalkanoic acid monomeric units are presented. Schemes of thermal degradation reaction of poly(hydroxyalkanoic acid)s.  相似文献   

4.
Isolation and characterization of poly(butylene succinate)-degrading fungi   总被引:3,自引:0,他引:3  
We isolated 12 poly(butylene succinate) (PBSu)-degrading fungi from various soil environments. Among the isolates, the NKCM1706 strain exhibited the fastest degradation rate for the PBSu film (10.5 μg cm−2 h−1). Phylogenetic analysis revealed that this strain is closely related to Aspergillus fumigatus (internal transcribed spacer (ITS) identity, 100%). Further, this strain exhibited PBSu-hydrolytic activity in the presence of poly(?-caprolactone) (PCL), PBSu, and poly(butylene succinate-co-adipate) (PBSA). On adding this strain into the soil sample, the PBSu degradation rate accelerated approximately sixfold, suggesting that this strain plays a crucial role in PBSu degradation in actual soil environments. In addition to PBSu, the NKCM1706 strain could degrade PBSA, poly(ethylene succinate) (PESu), poly(3-hydroxybutyrate) (P(3HB)), and PCL.  相似文献   

5.
The thermal degradation/modification dynamics of poly(-caprolactone) (PCL) was investigated in a thermogravimetric analyzer under non-isothermal and isothermal conditions. The time evolution of the molecular weight distribution during degradation was studied using gel permeation chromatography. Experimental molecular weight evolution and weight loss profile were modeled using continuous distribution kinetics. The degradation exhibited distinctly different behavior under non-isothermal and isothermal heating. Under non-isothermal heating, the mass of the polymer remained constant at initial stages with rapid degradation at longer times. The Friedman and Chang methods of analysis showed a 3-fold change (from 18 to 55–62 kcal mol−1) in the activation energy from low temperatures to high temperatures during degradation. This suggested the governing mechanism changes during degradation and was explained using two parallel mechanisms (random chain scission and specific chain end scission) without invoking the sequential reaction mechanisms. Under isothermal heating, the polymer degraded by pure unzipping of specific products from the chain end.  相似文献   

6.
Adsorption effects of poly(hydroxybutyric acid) (PHB) depolymerase from Ralstonia pickettii T1 on various polymer single crystals were studied using a catalytically inactive mutant of PHB depolymerase by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and frictional force microscopy (FFM). Six types of polymer single crystals, poly[(R)-3-hydroxybutyric acid] (P(3HB)), poly[(R)-3-hydroxybutyric acid-co-6 mol% (R)-3-hydroxyvaleric acid] (P(3HB-co-6 mol% 3HV)), poly[(R)-3-hydroxybutyric acid-co-8 mol% (R)-3-hydroxyhexanoic acid] (P(3HB-co-8 mol% 3HH)), poly(l-lactic acid) (PLLA), poly(d-lactic acid) (PDLA), and polyethylene (PE), were prepared to examine the influence of an ester bond and stereoregularity of a polymer on the enzymatic adsorption. The numbers of PHB depolymerase enzymes adsorbed on P(3HB) and P(3HB-co-6 mol% 3HV) single crystals were determined as 171 and 183 enzymes/μm2 by AFM, respectively. AFM observation revealed that the concentration of PHB depolymerase enzymes adsorbed onto PLLA and PDLA single crystals is much higher compared to those on a P(3HB) single crystal, whereas the concentration of enzyme adsorbed onto PE and P(3HB-co-8 mol% 3HH) single crystals is much less. In addition, the single crystals of each polymer were characterized by TEM and FFM before and after enzymatic treatment by mutant for 1 h at 37 °C. The surface properties of P(3HB), P(3HB-co-6 mol% 3HV), and P(3HB-co-8 mol% 3HH) single crystals were changed by the enzymatic adsorption, whereas the internal structures were not affected. On the basis of these results, the properties of the binding domain of PHB depolymerase to polymer chain-folding surfaces have been discussed.  相似文献   

7.
A series of poly[2,2′-(1,4-phenylene)-6,6′-bis(3-phenylquinoxalines)] were prepared. These polymers had all the same repeating unit but differed in molecular weight and polymer chain endings. The thermal degradation characteristics in air and vacuum were determined by isothermal weight loss measurements. The temperature coefficients of thermal degradation (apparent activation energies) were also determined. Whereas the apparent activation energies for degradation in air showed a considerable dependency on the type of polymer chain endings, no such effect was observed upon pyrolysis in vacuo. A possible chain-end unzipping mechanism of degradation in air is postulated to explain these results.  相似文献   

8.
Highly selective transformation of poly[(R)-3-hydroxybutyric acid] (PHB) into trans-crotonic acid was achieved by thermal degradation using Mg compounds: MgO and Mg(OH)2 as catalysts. Through catalytic action, not only the temperature and Ea value of degradation were lowered by 40-50 °C and 11-14 kJ mol−1, respectively, but also significant changes in the selectivity of pyrolyzates were observed. Notably, Mg(OH)2 showed nearly complete selectivity (∼100%) to trans-crotonic acid. Kinetic analysis of TG profiles revealed that the catalytic thermal degradation of PHB was initiated by some random degradation reactions, followed by the unzipping β-elimination from crotonate chain-ends as a main process. It was suggested that the Mg catalysts promote the totality of the β-elimination reactions by acting throughout the beginning and main processes, resulting in a lowering in the degradation temperature and the completely selective transformation of PHB.  相似文献   

9.
Poly(epsilon-caprolactone) (PCL) macromers (M(n) = 1.7-3.8 kDa) which contain one Z-protected -NH2 group per chain were synthesized by ring-opening polymerization of epsilon-caprolactone in the presence of Sn(oct)2 using as initiator a diamine prepared by condensation of N-Boc-1,6-hexanediamine and N(alpha)-Boc-N(epsilon)-Z-L-Lysine. The coupling of these macromers with -COCl end-capped poly(oxyethylene) (PEO), M(n) = 1.0 kDa, afforded amphiphilic multiblock poly(ether ester)s (PEEs) which have, along the chain, regularly spaced pendant protected amino groups. Deprotection, accomplished without chain degradation, yielded -NH2 groups available for further reactions. The molecular structure of macromers and PEEs was investigated by 1H NMR and SEC. DSC and WAXS analyses showed that macromers and copolymers were semicrystalline and their T(m) increased with increase in the molecular weight of PCL segments. The inherent viscosity values (0.25-0.30 dL x g(-1)), together with SEC analysis results, indicated moderate polymerization degrees.  相似文献   

10.
Communication: The phase structure and biodegradability were investigated for a blend of chemosynthetic atactic poly((R,S)‐3‐hydroxybutyrate), a‐P(3HB), and poly(methyl methacrylate), PMMA. The thermal analysis indicated that amorphous a‐P(3HB)/PMMA blends with 20 wt.‐% and 40 wt.‐% PMMA shows sophisticated phase behavior and is partially miscible. The depolymerase of natural poly((R)‐3‐hydroxybutyrate) purified from Alcaligenes faecalis T1 did not degrade chemosynthesized a‐P(3HB) at all in the pure state, but it degraded a‐P(3HB) in some a‐P(3HB)/PMMA blends. The results suggested that enzymatic degradation of a‐P(3HB) can be enhanced by an amorphous non‐biodegradable polymer.  相似文献   

11.
Inclusion complexes (ICs) between alpha-cyclodextrin (alpha-CD) and three kinds of biodegradable aliphatic polyesters with different sequence lengths of the monomeric repeating units poly(3-hydroxypropionate) [P(3HP)], poly(4-hydroxybutyrate) [P(4HB)] and poly(epsilon-caprolactone)(PCL) were prepared by mixing a solution of alpha-CD with that of the polymer, followed by stirring. The ICs were obtained as insoluble precipitates and characterized by FT-IR, WAXD and DSC. All measurements showed that the polymer chains of all three kinds of polyester were included into the alpha-CD cavity and formed ICs with different stoichiometries. WAXD patterns and thermal analysis indicated that these ICs possessed a channel structure and the crystallization of the polyester chains was suppressed upon inclusion into the alpha-CD cavity.  相似文献   

12.
The specific interaction between poly(3‐hydroxybutyrate) [P(3HB)] and 4,4′‐thiodiphenol (TDP) and between poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) and TDP was investigated by Fourier transform infrared (FTIR) spectroscopy. Interassociated hydrogen bonds were found between the polyester chains and the TDP molecules in the binary blends. The fractions of associated carbonyl groups, Fb 's, in the blends first increased and then decreased as the TDP content increased. The thermal and dynamic mechanical properties of P(3HB)–TDP and PHBV–TDP blends were investigated by differential scanning calorimetry and dynamic mechanical thermal analysis, respectively. Thermal analysis revealed that the P(3HB)–TDP blends possessed eutectic phase behavior. Furthermore, it was found that the thermal and dynamic mechanical properties of P(3HB) and PHBV were greatly modified through blending with TDP. Environmental degradability in river water was evaluated by a biochemical oxygen demand tester, and it was clarified that TDP lowered the degradation rate of P(3HB). The results suggest that TDP is effective in modifying the physical properties as well as the biodegradability of polyesters. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2891–2900, 2000  相似文献   

13.
The thermal degradation of poly(3-hydroxybutyrate) (PHB) was investigated by kinetic analyses in detail to clarify its complex degradation behavior, resulting in a finding of mixed mechanisms comprising at least a thermal random degradation with subsequent auto-accelerated transesterification, and a kinetically favored chain reaction from crotonate chain ends. The thermal degradation behavior of PHB varied with changes in time and/or temperature. From the kinetic analysis of changes in molecular weight, it was found that a non-auto-catalytic random degradation proceeding in the initial period was followed by an auto-accelerated reaction in the middle period. From the kinetic analysis of weight loss behavior, it is proposed that there are some kinetically favored scissions occurring at the chain ends, where the degradation proceeded by a 0th-order weight loss process in the middle stage. The observed 0th-order weight loss process was assumed to be an unzipping reaction occurring at ester groups neighboring the crotonate end groups.  相似文献   

14.
The thermal degradation of poly(p-phenylene-graft-?-caprolactone) (PPP), synthesized by Suzuki polycondensation of poly(?-caprolactone) (PCL) with a central 2,5-dibromo-1,4-benzene on the chain with 1,4-phenylene-diboronic acid, has been studied via direct pyrolysis mass spectrometry. The thermal degradation occurred mainly in two steps. In the first step, decomposition of PCL chains occurred. A slight increase in thermal stability of PCL chains was noted. In the second stage of pyrolysis, the decomposition of the polyphenylene backbone takes place. The evolution of CL monomer or small CL segments left on the phenyl ring continued also in the temperature region where degradation of PPP backbone started.  相似文献   

15.
The morphology and thermal stability of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blend nanocomposites with small amounts of TiO2 nanoparticles were investigated. The nanoparticles were mostly located in the PLA phase, with good dispersion of individual particles, although significant aggregation was also visible. The thermal stability and degradation behaviour of the different samples were studied using thermogravimetric analysis (TGA) and TGA-Fourier-transform infrared (FTIR) spectroscopy. Neat PCL showed better thermal stability than PLA, but the degradation kinetics revealed that PLA had a higher activation energy of degradation than PCL, indicating its degradation rate more strongly depends on temperature, probably because of a more complex degradation mechanism based on chain scission and re-formation. Blending of PLA and PCL reduced the thermal stabilities of both polymers, but the presence of TiO2 nanoparticles improved their thermal stability. The nanoparticles also influenced the volatilization of the degradation products from the blend, acted as degradation catalyst and/or retarded the escape of volatile degradation products.  相似文献   

16.
The degradation and repair of uniform sequence-defined poly(N-substituted urethane)s was studied. Polymers containing an ω-OH end-group and only ethyl carbamate main-chain repeat units rapidly degrade in NaOH solution through an ω→α depolymerization mechanism with no apparent sign of random chain cleavage. The degradation mechanism is not notably affected by the nature of the side-chain N-substituents and took place for all studied sequences. On the other hand, depolymerization is significantly influenced by the molecular structure of the main-chain repeat units. For instance, hexyl carbamate main-chain motifs block unzipping and can therefore be used to control the degradation of specific sequence sections. Interestingly, the partially degraded polymers can also be repaired; for example by using a combination of N,N′-disuccinimidyl carbonate with a secondary amine building-block. Overall, these findings open up interesting new avenues for chain-healing and sequence editing.  相似文献   

17.
Low‐molecular‐weight poly(propylene carbonate) resins, useful for polyurethane preparation, surfactant production and many other purposes, were obtained by copolymerization of CO2 and propylene oxide. This study describes an investigation into their stability against thermal degradation, offers details of the random chain‐breaking and “unzipping” processes, and suggests possible methods to avoid degradation.  相似文献   

18.
Enzymatic degradation behavior of a lamella of single crystals of poly(R)‐3‐hydroxybutyrate (P(3HB)) with an extracellular polyhydroxybutyrate (PHB) depolymerase purified from Alcaligenes faecalis T1 has been investigated by atomic force microscopy (AFM) in order to obtain further information for the chain packing state of P(3HB) in a lamellar single crystal. Two kinds of P(3HB) single crystals with different molecular weights, denoted respectively as H‐ and L‐P(3HB) for high and low molecular weights, respectively, were prepared. The enzymatic treatment was conducted for P(3HB) single crystals adsorbed on a surface of highly ordered pyrolytic graphite. The enzymatic degradation of both P(3HB) single crystals generates several crevices crosswise across the crystal at an early stage. Subsequently, the enzymatic degradation yields numbers of cracks lengthwise along the crystal. In addition to these common features, the interval between cracks crosswise across a lamella in H‐P(3HB) single crystal is longer than that in L‐P(3HB) single crystal, and each crack has V‐shaped and rectangular shaped morphology for H‐ and L‐P(3HB) single crystals, respectively. Based on these results, it is concluded that a lamella of P(3HB) single crystal has straight degradation pathways, that may correspond to a switchboard region, along the long axis of the crystal, independent of molecular weight of P(3HB) samples, and that a H‐P(3HB) single crystal has broader degradation pathways with longer intervals crosswise across the crystal than a L‐P(3HB) single crystal.  相似文献   

19.
《先进技术聚合物》2018,29(8):2224-2229
Poly(vinyl alcohol) (PVA) is a promising biocompatible polymer, whose applicability is limited by its narrow processing window. Here, we adopted a facile approach to broaden the processing windows of PVA based on phosphoric ester of poly(ethylene oxide) (10) nonylphenyl (NP‐10P). Thermal analysis shows that both the melting temperature (Tm) and the glass transition temperature (Tg) of PVA decrease noticeably as NP‐10P content increases, indicating good miscibility of NP‐10P with PVA. The thermal degradation kinetics suggests composites display excellent thermal stability compared with neat PVA. The pyrolysis mechanism of PVA before and after modification with NP‐10P varies from chain unzipping degradation followed by chain random scission to chain random scission. The processing window of PVA is broadened from 9°C to 98°C with low content NP‐10P (5 wt%). Moreover, the composites maintain significant mechanical performance and transparency. This work provides an environmentally friendly and economical method to improve the possibility of thermal melt processing for PVA.  相似文献   

20.
Poly(ethyl cyanoacrylate) was synthesized using N,N′-dimethyl-p-toluidine as an initiator through an anionic/zwitterionic pathway. The degradability and the degradation mechanism of the prepared polymer were examined from various viewpoints. A combination of TGA and GPC analysis allowed us to confirm that the thermal degradation of this polymer was predominantly due to an unzipping depolymerization process initiated from the polymer chain terminus. The polymer was inherently unstable and exhibited interesting degradation behavior in solution with basic reagents. The degradation in solution was also found to be attributed to the unzipping of the monomer from the chain end. However, the degradation behavior of the polymer could be controlled by changing solvents, temperatures, and additives. These findings give an insight into the degradation behavior of poly(alkyl cyanoacrylate)s, which is a crucial point in utilizing these polymer homologues for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号