首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of polyamide12 (PA12) and isotactic polypropylene (PP) were prepared by melt mixing, in an internal mixer, in the presence and absence of compatibiliser. The compatibiliser used was maleic anhydride grafted PP (PP-g-MA). The dynamic mechanical properties of the blends with and without compatibiliser were studied. Although compatibilization shifted the glass transition temperatures (Tg's) of component polymers only marginally, it significantly enhanced the storage modulus of the blends. The storage moduli of the uncompatibilised blends were compared with those predicted by theoretical models. Correlation between the dynamic mechanical properties of both compatibilised and uncompatibilised blends and their phase morphology was made.  相似文献   

2.
The morphology and thermal behaviour of polypropylene/polyamide 6 (PP/PA6), polypropylene/copolymer ethylene propylene diene (PP/PEBAX) and polypropylene/rigid polyurethane (PP/PUR) blends compatibilised with polypropylene-graft-maleic anhydride (PP-g-MA) were studied using scanning electron microscopy and thermogravimetric analyses. The study focuses on the influence of different blends obtained by mixing a thermoplastic, thermoplastic elastomer or thermoset with PP, compatibilised with PP-g-MA. The compatibilising effect of PP-g-MA in an immiscible PP/PA6 blend induces a homogeneous dispersion due to interfacial adhesion. For the PP/PEBAX and PP/PUR binary blends studied slight changes in the morphology were observed with a continuous phase but the PEBAX or PUR domains remained in the PP matrix. The deconvolution of the TGA curve permitted an evaluation of the decomposition stage of the undiluted and blend systems. Thermal stability is slightly influenced by the position of the maximum decomposition rate temperature of the first derivative thermogravimetric curve (DTG). However, the DTG curve profile remains consistent. The activation energy of undiluted PP was in the range of 162–169 kJ mol−1 determined by the Ozawa method. The stabilized activation energy value for all blends studied above a 0.4 weight-loss fraction is discussed.  相似文献   

3.
The influence of multiwalled carbon nanotubes (MWCNTs) on phase morphology, lamellar structure, thermal stability, melting behaviour and isothermal crystallisation kinetics of polycarbonate/polypropylene (PC/PP) blend nanocomposites has been investigated. Both neat blends and PC/PP (60/40)/MWCNT nanocomposites were prepared by melt mixing method. Morphological analyses were performed by high-resolution X-ray micro-computed tomography and scanning electron microscopy. The co-continuous morphology of the blend was retained irrespective of MWCNT loading. In addition, a substantial refinement in the co-continuous structure was observed. Wide angle and small angle X-ray scattering studies were used to analyse the structural properties of the blend nanocomposites. The addition of MWCNT increases the long period of polypropylene. The influence of addition of MWCNT on the crystallisation temperature and equilibrium melting temperature (Tm°) of polypropylene was followed. The MWCNTs promote crystallisation rate of polypropylene in the blend nanocomposites.  相似文献   

4.
This article reports on a new phenomenon: The presence of a compatibilizer accelerates the melting/plastification of an immiscible polymer blend during melt blending. The increase in the rate of melting as a result of the addition of a compatibilizer is believed to be one of the important factors responsible for the fact that the morphology of compatibilized blends develops much faster than that of their uncompatibilized counterparts. To substantiate the above statement, blends based on polypropylene (PP) and polyamide 6 (PA6) were used as model systems. The compatibilizer was a graft copolymer (PP-g-PA6) with PP as the backbone and PA6 as grafts. Its presence in a PP/PA6 blend accelerated the rate of melting of the PA6. This effect was observed only when the compatibilizer itself was molten and migrated to the interfacial layer between the PA6 and PP phases. It is likely that the presence of the compatibilizer increased the chain entanglements at the PP and PA6 interface and consequently reduced the thermal resistance of the interfacial layer. Detailed mechanisms are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3368–3384, 1999  相似文献   

5.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

6.
The phase morphology, crystallisation behaviour and mechanical properties of isotactic polypropylene (iPP)/high density polyethylene (HDPE) blends were investigated. It was found that the properties are intimately related to each other. The morphology of the blends showed a two phase structure in which the minor phase was dispersed as domains in the major continuous matrix phase. The domain size of the dispersed phase increased with increasing concentration of that phase due to coalescence. It was also found that the domain size of the dispersed phase depends on the viscosity difference between the two phases. For a given HDPE/iPP blend, where HDPE is the matrix and iPP is the dispersed phase, the iPP domains were smaller than HDPE domains of the corresponding iPP/HDPE blend where iPP is the matrix and HDPE is the dispersed phase. A co-continuous morphology was observed at 50/50 PP/HDPE composition. Crystallinity studies revealed that blending has not much effect on the crystalline melting point of polypropylene and high density polyethylene. The crystallisation enthalpy and heat of fusion values of HDPE and PP in the blend were decreased as the amount of the other component increased. The variation in percent crystallinity of HDPE and PP in the blend was found to depend on the morphology of the blend. All the mechanical properties except Young's modulus and hardness showed negative deviation from the additivity line. This is due to the incompatibility of these blends.  相似文献   

7.
Nylon copolymer (PA6, 66) and ethylene propylene diene (EPDM) blends with and without compatibilizer were prepared by melt mixing using Brabender Plasticorder. The thermal stability of nylon copolymer (PA6, 66)/ethylene propylene diene rubber (EPDM) blends was studied using thermogravimetric analysis (TGA). The morphology of the blends was investigated using scanning electron microscopy (SEM). In this work, the effects of blend ratio and compatibilisation on thermal stability and crystallinity were investigated. The incorporation of EPDM rubber was found to improve the thermal stability of nylon copolymer. The kinetic parameters of the degradation process were also studied. A good correlation was observed between the thermal properties and phase morphology of the blends. By applying Coats and Redfern method, the activation energies of various blends were derived from the Thermogravimetric curves. The compatibilization of the blends using EPM-g-MA has increased the degradation temperature and decreased the weight loss. EPM-g-MA is an effective compatibilizer as it increases the decomposition temperature and thermal stability of the blends. Crystallinity of various systems has been studied using wide angle X-ray scattering (WAXS). The addition of EPDM decreases the crystallinity of the blend systems.  相似文献   

8.
A series of polyamide 6/polypropylene (PA6/PP) blends and nanocomposites containing 4 wt% of organophilic modified montmorillonite (MMT) were designed and prepared by melt compounding followed by injection molding. Maleic anhydride polyethylene octene elastomer (POEgMAH) was used as impact modifier as well as compatibilizer in the blend system. Three weight ratios of PA6/PP blends were prepared i.e. 80:20, 70:30, and 60:40. The mechanical properties of PA6/PP blends and nanocomposite were studied through flexural and impact properties. Scanning electron microscopy (SEM) was used to study the microstructure. The incorporation of 10 wt% POEgMAH into PA6/PP blends significantly increased the toughness with a corresponding reduction in strength and stiffness. However, on further addition of 4 wt% organoclay, the strength and modulus increased but with a sacrifice in impact strength. It was also found that the mechanical properties are a function of blend ratio with 70:30 PA6/PP having the highest impact strength, both for blends and nanocomposites. The morphological study revealed that within the blend ratio studied, the higher the PA6 content, the finer were the POEgMAH particles.  相似文献   

9.
Among polyamide based blends, PA/PP alloys show interesting technological properties due to low moisture absorption. A model class of PA6/PP homopolymer blends, compatibilized through the addition of PP-g-MA is described in the present work; the experimentally obtained morphologies are related to predictive equations for co-continuity, at given rheological conditions. PP/compatibilizer ratio = 4/1 is found to impart an optimum level of phase dispersion. Moisture absorption, dimensional stability, mechanical properties and morphology are related with blend composition.  相似文献   

10.
Microwave-assisted chemical modification of lignin was achieved through esterification using maleic anhydride. Modified lignin (ML) was blended in different proportions up to 25 mass% with polypropylene (PP) using Brabender electronic Plasticorder at 190 °C. The structural and thermal properties of blends were investigated by thermogravometric analysis (TG), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). TG analysis showed increased thermal stability of blends due to antioxidant property of ML, which opposed oxidative degradation of PP. DSC analysis indicted slight depression in a glass transition temperature and melting temperature of blends due to partial miscible blend behavior between PP and ML. All blends showed higher crystallization temperatures and continuously reducing percentage crystallinity with increasing ML proportion in the blends. WAXD analysis indicated that PP crystallized in β polymeric form in addition to α-form in the presence of ML. However, proportion of β-form did not show linear relation with increase in ML proportion, thus ML acts as β nucleating agent in the PP matrix. SEM analysis showed good dispersion/miscibility in PP matrix indicating modification in lignin is useful.  相似文献   

11.
PA6/HIPS/PP-g-(GMA-co-St)反应共混体系的研究   总被引:7,自引:0,他引:7  
通过扫描电镜、热分析、熔体流动速率、熔融扭矩和力学性能等测试方法研究了甲基丙烯酸缩水甘油酯(GMA)和苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(GMA-co-St)]对PA6/HIPS共混物的熔融流变性能、结晶行为、相形态和力学性能的影响.结果表明,在熔融共混过程中,PP-g-(GMA-co-St)中的环氧基与PA6的端氨基原位生成的接枝共聚物有效地降低了共混物的界面张力,提高了共混物的界面粘着力,使共聚物的流动速率降低,熔融扭矩提高;PA6分子链的规整性降低,结晶完善性变差.在PP-g-(GMA-co-St)的质量分数为10%时,共混物分散相的尺寸明显减少,力学性能得到较大提高;其中冲击强度超过纯PA6,达到HIPS水平.通过反应共混,制备了力学性能均衡的PA6/HIPS/PP-g-(GMA-co-St)共混物合金.  相似文献   

12.
Annealing experiments have been carried out just below the melting temperature of both polyethylene (LLDPE) and polypropylene (PP) and their blends. The total melting enthalpy measured after the annealing cycle was greater by 10-15% with respect to the value having been measured before it. During the annealing period the heat capacity decreases to a lower value within the first 2-3 min. Heat capacities of PP (either in pure form or in the blends) measured during the heating cycle following the annealing cycle have the same value as during the cooling section. The heat capacities of the LLDPE in the heating cycle following the annealing were those of the preceding heating cycle. The total heat flows in the cooling section following the annealing cycle were greater than those in another cooling cycle at the same temperatures indicating that the crystallisation takes place during the cooling rather than during the annealing periods. The presence of LLDPE decreases the crystallisation temperature of PP. The presence of SEBS in the blend results in a greater crystallisation temperature than that of pure PP. The crystallisation temperature of LLDPE increases with increasing levels of PP. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Poly(lactic acid) (PLA) and polypropylene (PP) blends of various proportions were prepared by melt-compounding. The miscibility, phase morphology, thermal behavior, and mechanical and rheological properties of the blends were investigated. The blends were immiscible systems with two typical morphologies, spherical droplet and co-continuous, and could be obtained at various compositions. Complex viscosity, storage modulus and loss modulus depend on the PP content. Thermal degradation of all blends led to two weight losses, for PLA and PP. The incorporation of PP improved the thermal stability of the blend. The effect of compatibilizer (ethylene-butyl acrylate-glycidyl methacrylate terpolymer, EBA-GMA) on the morphology and mechanical properties of 70/30 w/w PLA/PP blends was investigated. The tensile strength of these blends reached a maximum for 2.5 wt% EBA-GMA, and impact strength increased with increasing EBA-GMA content, suggesting that EBA-GMA is an effective compatibilizer for PLA/PP blends.  相似文献   

14.
Summary: The influences of short chain branching (SCB) and molecular (Mw) weight of low density polyethylene (LDPE) on the solid state properties of polypropylene (PP)-LDPE blends were investigated by mechanical and thermal techniques. DSC analysis of all blends exhibit a double melting peak at all compositions studied thus suggesting that both PP and LDPE crystals exist separately in the solid state. It was found that the SCB and Mw of LDPE influenced the modulus and ultimate tensile strength of the blends. However, elongation at break seems to be independent of the molecular characteristics of the pure homopolymer especially at PP blend composition greater than 50%. LDPE with high SCB showed broader melting peaks. Addition of a small amount of a low Mw LDPE (10%) resulted in a higher elongation at break than a high Mw LDPE. There is likely a correlation between the presence of a new peak in the thermograms of PP-rich blends and the observed poor elongation at break.  相似文献   

15.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organically modified clay (organoclay) toughened with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA) were prepared by melt compounding using co-rotating twin-screw extruder followed by injection molding. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure of the nanocomposites. The mechanical properties of the nanocomposites were determined by tensile, flexural, and notched Izod impact tests. The single edge notch three point bending test was used to evaluate the fracture toughness of SEBS-g-MA toughened PA6/PP nanocomposites. Thermal properties were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). XRD and TEM results indicated the formation of the exfoliated structure for the PA6/PP/organoclay nanocomposites with and without SEBS-g-MA. With the exception of stiffness and strength, the addition of SEBS-g-MA into the PA6/PP/organoclay nanocomposites increased ductility, impact strength and fracture toughness. The elongation at break and fracture toughness of PA6/PP blends and nanocomposites were increased with increasing the testing speed, whereas tensile strength was decreased. The increase in ductility and fracture toughness at high testing speed could be attributed to the thermal blunting mechanism in front of crack tip. DSC results revealed that the presence of SEBS-g-MA had negligible effect on the melting and crystallization behavior of the PA6/PP/organoclay nanocomposites. TGA results showed that the incorporation of SEBS-g-MA increased the thermal stability of the nanocomposite.  相似文献   

16.
Thermal stability of ester-thermoplastic polyurethane (TPU)/polypropylene (PP) and ether-TPU/PP blends was evaluated by thermogravimetric studies. Thermal studies were made as a function of blend ratio. Effects of compatibilization using MA-g-PP and nanoclay addition on thermal stability were evaluated. Mass loss at 400 °C was found to decrease with increasing PP content were determined. Finally the compatibility and crystallization behavior of the blends were studied by differential scanning calorimetry. Compared to the ether-TPU blend nanocomposites, the ester-TPU blends showed better compatibility and thermal stability.  相似文献   

17.
Several compatibilising systems were added to high-density polyethylene (HDPE) and polyamide 6 (PA6) blends in the presence of an organically modified montmorillonite (OMM). All the blends were prepared by using a co-rotating twin-screw extruder and characterized by SEM, TEM and XRD analyses. In addition, the rheological behaviour and the mechanical properties - tensile and impact - were evaluated.The presence of OMM affects the dimensions of the polymeric phases in the blend but not their mutual adhesion, granted only by the compatibilisers.TEM, SEM and XRD analyses indicated that there is a strict correlation between the compatibilisation level and the final interlayer distance achieved by OMM.Even if some filled compatibilised blends showed a fairly good morphology - in terms of phase adhesion, dispersion and dimension - the mechanical performance was not so satisfactory. These results were interpreted considering the possible thermo-oxidative degradation of the organic modifier of OMM and the subsequent interaction between and the degradation products and the compatibilising systems. In order to prevent these phenomena, a stabilizing system was added to the nanocomposite blends. In this case, an improvement of mechanical properties was achieved.  相似文献   

18.
This study investigates the processing of blends of polyamide 6 (PA6) and polyamide 12 (PA12) by selective laser sintering (SLS) using a CO2 laser. Powder properties of undiluted polymers, mixture composition, and processing parameters, as well as their influence on the microstructure of the specimens manufactured, were evaluated. Polyamides showed higher absorption of laser energy during the sintering of blend specimens, with subsequent thermal energy transfer to the melting of the polymeric phases. The structure of parts obtained by SLS is dependent on the process parameters and the characteristics of the powder material to be processed. The microstructures of PA6/PA12 blend specimens were heterogeneous, with co-continuous and disperse phases depending on the quantity of PA12. The porosity and crystallinity also changed as a function of the component proportions. The use of polymeric blends can increase the range of structures and properties of SLS parts.  相似文献   

19.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were compatibilized with maleic anhydride-grafted ethylene-propylene rubber (EPRgMA). The blends were melt compounded in twin screw extruder followed by injection molding. The mechanical properties of PA6/PP nanocomposites were studied by tensile and flexural tests. The microstructure of the nanocomposite were assessed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The dynamic mechanical properties of the PA6/PP blend-based nanocomposites were analyzed by using a dynamic mechanical thermal analyzer (DMTA). The rheological properties were conducted from plate/plate rheometry via dynamic frequency sweep scans. The melt viscosity in a high shear rate region was performed by using a capillary rheometer. The strength and stiffness of the PA6/PP-based nanocomposites were improved significantly with the incorporation of EPRgMA. Adding EPRgMA to the PA6/PP blends resulted in a finer dispersion of the PP phase. TEM and XRD results revealed that the organoclay was dispersed more homogeneously in the presence of EPRgMA, however, mostly in the PA6 phase of the blends. DMTA results showed that EPRgMA worked as an effective compatibilizer. The storage (G′) and loss moduli (G″) assessed by plate/plate rheometry of PA6/PP blends increased with the incorporation of EPRgMA and organoclay. Furthermore, the apparent shear viscosity of the PA6/PP blend increased significantly for the EPRgMA compatibilized PA6/PP/organoclay nanocomposite. This was traced to the formation of an interphase between PA6 and PP (via PA6-g-EPR) and effective intercalation/exfoliation of the organoclay.  相似文献   

20.
The aim of the present study was to improve the compatibility in blends of natural rubber (NR) and polyamide 12 (PA12) by grafting NR with hydrophilic monomer, diacetone acrylamide (DAAM), via seeded emulsion polymerization. The increase in polarity of NR after grafting modification was confirmed by a considerable increase in the polar component of its surface energy. Blends of graft copolymers of NR and poly(diacetone acrylamide) prepared using 10 wt% of DAAM (NR‐g‐PDAAM10) and PA12 were prepared at a 60/40 blend ratio (wt%) using simple blend and dynamic vulcanization techniques. The mechanical and rheological properties of the resulting blends were subsequently investigated and compared with those of the corresponding blends based on unmodified NR. The results show that dynamic vulcanization led to a significant increase in both mechanical and rheological properties of the blends. It was also observed that the dynamically cured NR‐g‐PDAAM10/PA12 blend had smaller particle size of vulcanized rubber dispersed in the PA12 matrix than observed for the dynamically cured NR/PA12 blend. This is due to the compatibilizing effect of DAAM groups present in NR‐g‐PDAAM10 molecule, which decreases the interfacial tension between the two polymeric phases. Therefore, it can be stated that the interfacial adhesion between NR and PA12 was improved by the presence of DAAM groups in NR molecule. This was reflected in the higher tensile properties observed in the dynamically cured NR‐g‐PDAAM10/PA12 blend. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号