首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we have studied the atomic population difference and the atomic tunneling current of two-component Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10^-10 ~ 10^-9 second.  相似文献   

2.
It is shown that the atomic tunneling current and the Shapiro-like steps strongly depend on the initial number of atoms in each condensate and the initial phase difference between the two condensates which are initially in even(odd) coherent states.The nonlinearity of interatomic interactions in the two condensates may lead to the atomic tunneling current and Shapiro-like step between the two condensates.It is found that the interatomic nonlinear interactions can induce the atomic tunneling current and Shapiro-like step between two condensates even though there does not exist the interspecies Josephson-like tunneling coupling.The static atomic tunneling current flows in positive or negative direction,which depends on the phase difference of the two-species condensates.  相似文献   

3.
In this paper, we have studied tunneling dynamics of the halves of a double-well trap containing a Bose-Einstein condensate. It is found that there exist step structure and macroscopic quantum self-trapping of population difference of atoms, and exist Shapiro-like steps of atomic tunneling current. Both the population difference and the atomic tunneling current depend strongly on the total number of atoms and the initial phase difference.  相似文献   

4.
In this paper, we have studied tunneling dynamics of the halves of a double-well trap containing a Bose-Einstein condensate. It is found that there exist step structure and macroscopic quantum self-trapping of populationdifference of atoms, and exist Shapiro-like steps of atomic tunneling current. Both the population difference and theatomic tunneling current depend strongly on the total number of atoms and the initial phase difference.  相似文献   

5.
Tunneling dynamics of multi-atomic molecules between atomic and multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated.It is indicated that the tunneling in the two Bose-Einstein condensates depends on not only the inter-atomic-molecular nonlinear interactions and the initial number of atoms in these condensates,but also the tunneling coupling between the atomic condensate and the multi-atomic molecular condensate.It is discovered that besides oscillating tunneling current between the atomic condensate and the multi-atomic molecular condensate,the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance:a macroscopic quantum self-trapping effect.The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied.It is shown that de-coherence suppresses the multi-atomic molecular tunneling.Moreover,the conception of the molecular Bose-Einstein condensate,which is different from the conventional single-atomic Bose-Einstein condensate,is specially emphasized in this paper.  相似文献   

6.
We have studied the tunneling dynamics of two-species Bose-Einstein condensates. It is shown that the population difference and the Josephson-like tunneling current between the two condensates exhibit oscillation behaviors and there exists macroscopic quantum self-trapping, which strongly depends on the initial state, interatomic nonlinear self-interaction, interspecies nonlinear interaction, and the total number of atoms in the two condensates.  相似文献   

7.
邱建国 《中国物理快报》2006,23(6):1387-1390
We present an approximate analytical solution to the population imbalance of two-component Bose-Einstein condensate with the coupling drive. The dependence of the time evolution of self-trapping upon the radio frequency wave, the Rabi coupling frequency, the initial atom number and relative phase between two condensates are investigated. The lower radio frequency wave, the same atom number and initial relative phase between condensates are beneficial to observe the self-trapping.  相似文献   

8.
We study tunneling dynamics of atomic group in two-species molecular Bose-Einstein condensates. It is shown that the tunneling of the atom group depends on not only the tunneling coupling constant between the atomic pair molecular condensate and the three-atomic group molecular condensate, but also the inter-molecular nonlinear interactions and the initial number of atoms in these condensates. It is discovered that besides oscillating tunneling current between the atomic pair molecular condensate and the three-atomic group molecular condensate, the nonlinear atomic group tunneling dynamics sustains a self-maintained population imbalance: a macroscopic quantum self-trapping effect.  相似文献   

9.
We investigate tunneling dynamics of atomic group consisting of three atoms in Bose-Einstein condensates with Feshbach resonance. It is shown that the tunneling of the atom group depends not only on the inter-atomic nonlinear interactions and the initial number of atoms in these condensates, but also on the tunneling coupling between the atomic condensate and the three-atomic molecular condensate. It is found that besides oscillating tunneling current between the atomic condensate and the molecular condensate, the nonlinear atomic group tunneling dynamics sustains a self-maintained population imbalance: a macroscopic quantum self-trapping effect. The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied. It is indicated that de-coherence suppresses the atomic group tunneling.  相似文献   

10.
The Rabi oscillations in two-component Bose-Einstein condensates with a coupling drive are studiedby means of a pair of bosonic operators. The coupling drive and initial phase difference will affect the amplitudeand the period of the Rabi oscillations. The Rabi oscillations will vanish in the evolution of the condensate densityfor some special initial phase differences (ψ = 0 or π). Our theory provides not only an analytical framework forquantitative predictions for two-component condensates, but also gives an intuitive understanding of some mysteriousfeatures observed in experiments and numerical. simulations.  相似文献   

11.
We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.Received: 22 May 2004, Published online: 10 August 2004PACS: 03.75.-b Matter waves - 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates - 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices and topological excitations - 05.30.Jp Boson systems  相似文献   

12.
In this letter, we have studied sub-Poissonian distributions and quantum correlation of atoms in spinor Bose-Einstein condensates. It is found that there exists the sub-Poissonian distributions for spin-1 and spin-(-1) components, respectively. There may exist the violation of the Cauchy-Schwartz inequality. For the same atomic numbers, the regions that include violation of the Cauchy-Schwartz inequality will shift rightwards with the increment of the Rabi frequency, whereas for the same Rabi frequency, the regions will shift leftwards with the increment of the atomic numbers.  相似文献   

13.
Tunneling dynamics of multi-atomic molecules between any two multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated. It is indicated that the tunneling in the two Bose-Einstein condensates depends not only on the inter-molecular nonlinear interactions and the initial number of molecule in these condensates, but also on the tunneling coupling between them. It is discovered that besides oscillating tunneling current between the multi-atomic molecular condensates, the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance: a macroscopic quantum self-trapping effect. The influence of de-coherence caused by non-condensate molecule on the tunneling dynamics is studied. It is shown that de-coherence suppresses the multi-atomic molecular tunneling.  相似文献   

14.
The theoretical investigation of quantum coherent atomic oscillations between two coupled Bose-Einstein condensates(BECs) is studied. We apply the inseparable wave function of time-space to describe two trapped BECs in a double-well magnetic trap. According to Thomas-Fermi approximation, dynamical equations of the interwell phase difference and population imbalance are obtained. Using numerical method, coherent atomic tunneling and macroscopic quantum self-trapping(MQST) effect are investigated.  相似文献   

15.
理论上考察了两耦合玻色-爱因斯坦凝聚体间的相干原子振荡,我们用时空不能完全分离的波函数去描述囚禁在双磁阱中的玻色-爱因斯坦凝聚体,根据托马斯-费米近似,得到两凝聚体的相位差和布局数随时间的演化方程,应用数值计算的方法,考察了相干原子遂穿和宏观量子自囚禁效应.这些研究结果和采用双模时空分离波函数近似法得到的结果进行了比较.  相似文献   

16.
We investigate tunneling dynamics of atomic group consisting of three atoms in Bose-Einstein condensateswith Feshbach resonance. It is shown that the tunneling of the atom group depends not only on the inter-atomicnonlinear interactions and the initial number of atoms in these condensates, but also on the tunneling coupling betweenthe atomic condensate and the three-atomic molecular condensate. It is found that besides oscillating tunneling currentbetween the atomic condensate and the molecular condensate, the nonlinear atomic group tunneling dynamics sustains aself-maintained population imbalance: a macroscopic quantum self-trapping effect. The influence of de-coherence causedby non-condensate atoms on the tunneling dynamics is studied. It is indicated that de-coherence suppresses the atomicgroup tunneling.  相似文献   

17.
铁璐  薛具奎 《中国物理 B》2011,20(12):120311-120311
The nonlinear Landau-Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. Within the two-level model, the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained. We finds that the tunneling rate is closely related to the higher-order atomic interaction. Furthermore, the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias. Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained. It is shown that the critical value strongly depends on the modulation parameters (i.e., the modulation amplitude and frequency) and the strength of periodic potential.  相似文献   

18.
Two Bose-Einstein condensates in different Zeeman sublevels can be decoupled from driving light fields in coherent population trapping. A condensate pair with a deterministic entanglement and a controllable value of the relative phase may be prepared by selecting the phase difference between the coherent light fields. The rate of the condensate phase diffusion may be determined from the two-photon resonant absorption of radiation. Received: 29 June 1998 / Revised: 10 October 1998 / Accepted: 19 October 1998  相似文献   

19.
The chaotic coherent atomic tunneling between two periodically driven and weakly coupled Bose-Einstein condensates has been investigated. The perturbed correction to the homoclinic orbit is constructed and its boundedness conditions are established that contain the Melnikov criterion for the onset of chaos. We analytically reveal that the chaotic coherent atomic tunneling is deterministic but not predictable. Our numerical calculation shows good agreement with the analytical result and exhibits nonphysically numerical instability. By adjusting the initial conditions, we propose a method to control the unboundedness, which leads the quantum coherent atomic tunneling to predictable periodical oscillation.  相似文献   

20.
花巍  李彬  刘学深 《中国物理 B》2011,20(6):60308-060308
The tunneling effect of Bose-Einstein condensate (BEC) in a harmonic trap with a Gaussian energy barrier is studied in this paper. The initial condensate evolves into two separate moving condensates after the tunneling time under certain conditions. The interference pattern between the two moving condensates is given as a comparison and as a further demonstration of the existence of the global phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号