首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ruthenium(III) has been efficiently extracted from 0.05 M sodium succinate at pH 9.5 by 2-octylaminopyridine in xylene and stripped with aqueous 10% (w/v) thiourea solution and determined spectrophotometrically. Various parameters viz., pH, weak acid concentration, reagent concentration, stripping agents, contact time, loading capacity, aq.: org. volume ratio, solvent has been thoroughly investigated for quantitative extraction of ruthenium(III). The utility of method was analyzed by separating the ruthenium(III) from binary mixture along with the base metals like Cu(II), Ag(I), Fe(II), Co(II), Bi(III), Zn(II), Ni(II), Se(IV), Te(IV), Al(III) and Hg(II) as well as platinum group metals (PGMs). Ruthenium(III) was also separated from ternary mixtures like Os(VIII), Pd(II); Pd(II), Pt(IV); Pd(II), Au(III); Pd(II), Cu(II); Fe(II), Cu(II); Ni(II), Cu(II); Co(II), Ni(II); Se(IV), Te(IV); Rh(III), Pd(II); Fe(III), Os(VIII). The stoichiometry 1: 2: 1 (metal: succinate: extractant) of the proposed complex was determined by slope analysis method by plotting graph of logD [Ru(III)] versus logC [2-OAP] and logD [Ru(III)] versus logC [succinate]. The interference of various cations and anions has been studied in detail and the statistical evaluations of the experimental results are reported. The method was successfully applied for the analysis of ruthenium in various catalysts, synthetic mixtures corresponding to the composition of alloys and minerals.  相似文献   

2.
In this study, the role of oxygen in the regeneration of Fe(III) during the degradation of atrazine in UV/Fe(III) process was studied. The degradations of atrazine in UV/Fe(III) and UV-photolysis processes in the presence and absence of oxygen were compared. The results showed that the degradations of atrazine in these processes followed the pseudo-first-order kinetics well. The process exhibiting the highest rate constant (k) was UV/Fe(III)/air process, because k-value for UV/Fe(III)/air process was about 1.47, 2.23 and 2.56 times of those for UV/Fe(III)/N2, UV/air and UV/N2 processes, respectively. The degradation of atrazine was enhanced by oxygen in UV/Fe(III) process and the enhancement was more remarkable at higher initial concentrations of Fe(III). The investigation into the changes of Fe(III) concentrations demonstrated that the presence of oxygen led to the regeneration of Fe(III), which resulted in the enhancement of atrazine degradation. With air bubbling, the ferric ions were 25% more than those with N2 bubbling. The experimental data showed the regeneration of Fe(III) required the excited organic molecules and oxygen and on the basis of these results, the regeneration mechanism of Fe(III) was proposed. It was also found that due to the oxidation of Fe(II), the degradation of atrazine in UV/Fe(II)/air process was effective at a low Fe(II) concentration of 7 mg/L, similar to that in UV/Fe(III)/air process. This study makes clear the role of oxygen in the regeneration of Fe(III), and thus it provides a guide to reduce the input of Fe(III) and is helpful to the application of UV/Fe(III) process in practice.  相似文献   

3.
A grafted polymer reference electrode (GPRE) (polystyrene grafted with acrylonitrile as a monomer using gamma irradiation) was fabricated as a reference electrode using cyclic voltammetry (CV). The redox process of K3Fe(CN)6 during CV was studied. It was found that the redox current peaks of Fe(II)/Fe(III) in 0.1 M of KCl as supporting electrolyte is given the same oxidation–reduction current as in the Ag/AgCl reference electrode, indicating a good result of GPRE and, hence, it can be used for voltammetric analysis technique. The physical properties of GPRE include good hardness, insoluble in non-aqueous electrolytes (except dimethyl formamide and chloroform), and good stability at different solvents. In addition, the sensitivity under conditions of CV is significantly dependent on the scan rate (SR) and variation in concentration. At different SRs, redox peaks of K3Fe(CN)6 were observed in a reversible process: Fe(II)/Fe(III). Interestingly, the redox reaction of Fe(II)/Fe(III) solution using GCE versus GPRE remains constant even after 15 cyclings. It is therefore evident that the GPRE possesses some degree of stability. Also, the new reference electrode GPRE has improved the properties of electroanalysis of CV on the working electrode GCE in reliability with the relative standard deviation.  相似文献   

4.
PuO2(am) solubility was investigated as a function of time, for pH from 0.5 to 11, and in the presence of 0.001 M FeCl2 or 0.00052 M hydroquinone to determine the effect of environmentally important reducing agents on PuO2(am) solubilization under geological conditions. Equilibrium was reached in <4 days. The observed PuO2(am) solubilities were many orders of magnitude higher than the Pu(IV) concentrations predicted from thermodynamic data. Spectroscopic, solvent extraction, and thermodynamic analyses of data showed that Pu(III) was the dominant aqueous oxidation state. The experimental pH, pe, and Pu(III) concentrations from both the Fe(II) and hydroquinone systems provided a log K 0 value of 15.5 ± 0.7 for [PuO2(am) + 4H+ + e Pu3+ + 2H2O]. The data show that reduction reactions involving Fe(II) and hydroquinone are relatively rapid and that reductive dissolution of PuO2(am), hitherto ignored, may play an important role in controlling Pu behavior under reducing environmental conditions.  相似文献   

5.
We have covalently grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The resulting material was characterized by FT-IR and UV–vis spectroscopy, by TGA, XPS and SEM. It is shown to be a valuable solid-phase extraction adsorbent for the preconcentration of trace quantities of Fe(III), Cu(II) and Pb(II) ion from aqueous solution prior to their determination by ICP-OES. Various factors affectting the separation and preconcentration were investigated. The enrichment factor typically is 100. Under optimized experimental conditions, the maximum adsorption capacities for Fe(III), Cu(II) and Pb (II) are 64.5, 30.5 and 17.0?mg?g-1, respectively, the detection limits are 0.26, 0.15 and 0.18?ng?mL-1, and the relative standard deviations are <2.5% (n?=?6). The new adsorbent shows superior reusability and stability. The procedure was successfully applied to the determination of trace quantities of Fe(III), Cu(II) and Pb (II) in water samples.
Figure
Multiwalled carbon nanotubes grafted with phenyl-iminodiacetic acid (PIDA-MWCNTs) is prepared and employed as solid phase extraction sorbent to determinate the trace Fe(III), Cu(II) and Pb (II) in water samples. The method has been applied to the preconcentration of trace amount of Fe(III), Cu(II) and Pb (II) in water samples with satisfactory results.  相似文献   

6.
Iron(III) oxyhydroxides were prepared by oxidation of aerated aqueous suspensions of Fe(II) hydroxide. The effects of arsenate species on their formation were studied by mixing FeCl2·4H2O, NaOH and Na2HAsO4 solutions. The intermediate and final products of the oxidation processes were characterised by X-ray diffraction, Infrared and Raman spectroscopy. Arsenate species were not reduced during the process but they influenced both oxidation stages, that is the formation of the intermediate Fe(II–III) compound and its subsequent oxidation into Fe(III) compounds. Arsenate species clearly inhibited the growth and hindered the crystallisation of GR(Cl?), the Fe(II–III) hydroxychloride that would have formed in the experimental conditions considered here. For the largest arsenate concentrations, the intermediate product was nanocrystalline and more likely consisted of clusters showing an ordering of atoms similar to that of GR(Cl?), isolated from each other by adsorbed arsenate species. The adsorption of As(V) prevented growth of these clusters into well-crystallised GR(Cl?). The arsenate species influenced similarly the second reaction stage by inhibiting the formation of well-ordered and crystallised Fe(III) compounds. Lepidocrocite, the final product in the absence of arsenate, was replaced by “6-line” ferrihydrite with increasing As(V) concentration, then “6-line” ferrihydrite was replaced by another poorly ordered compound, feroxyhite. These crystallised compounds were obtained together with an increasing part of nanocrystalline Fe(III) ox(yhydrox)ide(s).  相似文献   

7.
The extraction behavior of nalidixic acid (HNA) in CH2Cl2 has been studied for various di- and trivalent metal ions such as Cu(II), Fe(II), Ni(II), Mn(II), Sb(II), Co(II), Sc(III), Y(III), Nd(III) and Eu(III) from aqueous buffer solutions of pH 1–7 with 0.1 mol dm−3 nalidixic acid in dichloromethane. Separation factors of Sc(III) from these metals has shown that its clean separation is possible at pH 3.4–4. The parameters affecting the extraction of Sc(III) were optimized. The composition of the extracted adduct was determined by slope analysis method that came out to be Sc(NA)3. Extraction of Sc(III) was studied in the presence of various cations and anions. Among the anions studied only fluoride, citrate and oxalate have significant interference whereas, Fe(III) has reduced the extraction to 53% that can be removed by using ascorbic acid as reducing agent. The proposed extraction system proved good stability up to six extraction-stripping stages for the extraction of Sc(III).  相似文献   

8.
Solvent extraction of Cu(II) by 4-(5-nonyl)pyridine (NPy) in benzene from mineral acid solutions containing thiosulfate ions has been studied at room temperature (23±2°C). Mineral acid solutions alone constitute an aqueous phase from which Cu(II) is not extracted. Addition of small amounts of thiosulfate ions augments the extraction to an extent that quantitative recovery is possible. Stoichiometric studies reveal the involvement of ion-pair type complexes (NPy·H)2·Cu(S2O3)2 which are responsible for extraction. Stability constants lg Kex for this complex are 7.2±0.2; 9.1±0.2 and 9.5±0.2 for HCl, HNO3 and H2SO4, respectively. The presence of 0.01 mol/l of some complexing ions like ascorbate, acetate, citrate, oxalate, tartrate or iodide does not affect the extraction, thus allowing the recovery of the metal from diverse matrices. Under optimal conditions (0.1M NPy in benzene-0.1M HNO3 or H2SO4+0.01M S2O 3 ?2 or 0.5M HCl+0.05 M S2O 3 ?2 ) a clean separation from some elements, e.g. Cs(I). Co(II), Fe(III), Eu(III), Ce(III), Se(IV) and Cr(VI) can be achieved.  相似文献   

9.
The analytical determination of Hg(II), Cu(II), Cd(II), As(III), Sb(III), Ti(IV) and U(VI) in the presence of Fe(III) and 1 M H2SO4 are investigated using the polarographic technique. The wave corresponding to the reduction of Fe(III) to Fe(II) was found to be completely suppressed by the addition of 1% pyrogallol. Thus, different mixtures of these elements, viz. Hg(II), Cu(II), Cd(II), As(III) and Fe(III)-mixture (A), Cu(II), Cd(II), Sb(III), As(III) and Fe(III)-mixture (B), and Cu(II), Cd(II), Ti(IV), U(VI) and Fe(III)-mixture (C), were quantitatively determined using 1% pyrogallol and 1 M H2SO4 as supporting electrolyte. The i1/c results give excellent correlations in each case, as indicated from the results of leastsquares regression analysis.  相似文献   

10.
Summary The cation-exchange behaviour of Mg(II), Ca(II), Sr(II), Ba(II), Mn(II), Cd(II), Co(II), Ni(II), Zn(II), Cu(II) and Fe(III) in succinate media at various concentrations and pH, was studied with Dowex 50 WX8 resin (200–400 mesh) in the NH 4 + form. As examples separations of Cd(II)/Co(II), Cd (II)/Ni(II), Fe(III)/Cu(II)/Ni(II) and Mg(II)/Ca(II)/Sr(II)/Ba(II) have been achieved.This work was supported by C.N.R. of Italy.  相似文献   

11.
The electrochemical redox behavior of Fe(II)/Fe(III) systems formed during the oxidation of complexes [Fe(C7H4NO3S)2(H2O)4] · 2H2O (Fe-sac) and [Fe(C7H4NO3S)2(C12H8N2] · 2H2O (Fe-sac-phen) have been investigated using cyclic voltammetry in the aqueous medium. In the CVs one pair of well-defined cathodic and anodic peaks appear for the transfer of single electron in the Fe-sac complex. The peak potentials are much wider separated as compared with the free (uncoordinated) Fe(II)/Fe(III) system. The ΔE values demonstrate that the electrode process is irreversible. In the presence of secondary ligand, 1,10-phenanthroline (Fe-sac-phen complex), the redox behavior of iron complexes is quasireversible. The effect of pH on the redox behavior of iron system is studied in acetate buffer. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 12, pp. 1504–1509. The text was submitted by author in English  相似文献   

12.
《Talanta》1987,34(9):763-769
The conditional potentials of redox systems not involving protons have been studied as a function of phosphoric acid concentration (1–14M), with the ferricinium/ferrocene couple as the comparison system. The following systems were considered: Cu(II)/Cu, Cd(II)/Cd, Sn(II)/Sn, Zn(II)/Zn, Ag(I)/Ag, Pb(II)/Pb, Hg(II)/Hg, Bi(III)/Bi and particularly Fe(III)/Fe(II) and Fe(II)/Fe. The hexacyanoferrate(III)/hexacyanoferrate(II) and iodine/iodide couples were also studied. The results are presented as a potential—H3PO4 concentration diagram (or potential—acidity level diagram).  相似文献   

13.
The rates of oxidation of Fe(II) in NaCl and NaClO 4 solutions were studied as a function of pH (6 to 9), temperature (5 to 25°C), and ionic strength (0 to 6m). The rates are second order with respect to [H+] or [OH] and independent of ionic strength and temperature. The overall rate of the oxidation is given by
  相似文献   

14.
Fluorescence probes NA1 and NA2 derived from 1-naphthylamine (NA) as fluorophore have been synthesized and characterized by different spectroscopic studies. Identification behaviour of these probes towards various metal ions has been investigated. Both the fluorescent probes are selective as well as sensitive towards Fe(III) ion. Novel fluorescence probe NA2 afforded turn-on fluorescence behaviour for Fe(III) ion over other metal ions such as Ca(II), Mg(II), Mn(II), Fe(II), Co(II), Fe(III), Ni(II), Cu(II), Zn(II) and Hg(II).  相似文献   

15.
    
Summary A simple method for the preparation of immobilized -diketone chelates on silica gel, controlled pore glass as well as chemically modfied -diketone filter papers is described. This support material shows complexing affinity only for Cu(II), UO2(II) and Fe(III) and no significant affinity is observed for Ni(II), Co(II), Zn(II), Mg(II), Ca(II), La(III), Th(IV), etc. Effect of pH, time and complexing agents on the extraction of UO2(II) is investigated. Exchange capacities, desorption studies as well separation of UO2(II) from Cu(II), La(III), and Th(IV) were conducted. The distribution coefficients determined in presence of 0.5 M NaCl for UO2(II) is of the order of > 104 as compared with > 102 for Cu(II) and Fe(III), indicating its potential application as a preconcentration aid for UO2(II) ion from sea water and natural waters.Paper presented at Euroanalysis III, Dublin, Ireland 1978 (20th–25th August)  相似文献   

16.
The conditions for the flow determination of Al(III), Bi(III), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Nd(III), Ni(II), Pb(II), Pr(III), and Zn(II) by reaction with Xylenol Orange in aqueous solutions at pH 4.5 and the determination of Cd(II), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), and Zn(II) by reaction with 4-(2-thiazolylazo)resorcinol in water–ethanol mixtures (5 : 1) at pH 5.0 using an injected sample volume of 80 L were proposed. The limits of detection were n × 10–8n × 10–7 mol/L; the linearity ranges in the calibration graphs were of about three orders of magnitude; the relative standard deviation was of 3–7%.  相似文献   

17.
Oxidation of metallic Pd(0) particles applied onto an oxide support with Fe(III) ions in a concentration not exceeding 0.06 M at 70°C was studied. In contrast to palladium black, with the supported catalyst Pd/ZrO2 Pd(II) is formed in the solution in the concentration corresponding to the thermodynamic equilibrium. With an increase in the initial Fe(III) concentration, the equilibrium yield of Pd(II) increases. The initial reaction rate grows with an increase in the weight of the initial Pd-containing catalyst and in the initial Fe(III) concentration. The revealed kinetic relationships of the dissolution of Pd(0) in the reaction with Fe(III) aqua ions allow a conclusion that, in oxidation of lower olefins C2-C4 in the catalytic system Fe(III)_Pd/ZrO2 in aqueous solution, Pd(II) is regenerated in the catalytic cycle by oxidation of Pd(I) species, rather than of Pd(0), with Fe(III) aqua ions.  相似文献   

18.
Titanomagnetite (Fe3−xTixO4) nanoparticles were synthesized by room temperature aqueous precipitation, in which Ti(IV) replaces Fe(III) and is charge compensated by conversion of Fe(III) to Fe(II) in the unit cell. A comprehensive suite of tools was used to probe composition, structure, and magnetic properties down to site-occupancy level, emphasizing distribution and accessibility of Fe(II) as a function of x. Synthesis of nanoparticles in the range 0 ? x ? 0.6 was attempted; Ti, total Fe and Fe(II) content were verified by chemical analysis. TEM indicated homogeneous spherical 9-12 nm particles. μ-XRD and Mössbauer spectroscopy on anoxic aqueous suspensions verified the inverse spinel structure and Ti(IV) incorporation in the unit cell up to x ? 0.38, based on Fe(II)/Fe(III) ratio deduced from the unit cell edge and Mössbauer spectra. Nanoparticles with a higher value of x possessed a minor amorphous secondary Fe(II)/Ti(IV) phase. XANES/EXAFS indicated Ti(IV) incorporation in the octahedral sublattice (B-site) and proportional increases in Fe(II)/Fe(III) ratio. XA/XMCD indicated that increases arise from increasing B-site Fe(II), and that these charge-balancing equivalents segregate to those B-sites near particle surfaces. Dissolution studies showed that this segregation persists after release of Fe(II) into solution, in amounts systematically proportional to x and thus the Fe(II)/Fe(III) ratio. A mechanistic reaction model was developed entailing mobile B-site Fe(II) supplying a highly interactive surface phase that undergoes interfacial electron transfer with oxidants in solution, sustained by outward Fe(II) migration from particle interiors and concurrent inward migration of charge-balancing cationic vacancies in a ratio of 3:1.  相似文献   

19.
Cluster calculations of the structure of the nest defect in zeolites were carried out by the density functional theory (DFT) method. The hydroxyl groups of the defect form an ordered structure stabilized by hydrogen bonds. Immobilization of Fe(II) and Fe(III) ions by the nest defect from iron chlorides is discussed for the two limiting cases of rigid and labile lattices, and the resulting structures are compared. The implanted Fe(II) and Fe(III) ions are considered as the precursors of the selective oxidation centers formed by N2O decomposition; the difference between the stabilization energies of oxygen on these centers is evaluated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号