首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
(Na0.52K0.44Li0.04)Nb0.9-x Sbx Ta0.1O3 lead-free piezoelectric ceramics are prepared by a solid-state reaction method. With increasing Sb content, the transition temperature from orthorhombic to tetragonal polymorphic phase decreased. A composition (Na0.52K0.44Li0.04)Nb0.863Sb0.037Ta0.1O3 is found to possess excellent piezo- electric and electromechanical performances (d33 = 306pC/N, kp =48%, and kt=50%), and high Curie temperature (Tc = 320 ℃). These results indicate that (Na0.52K0.44Li0.04)Nb0.863Sb0.037 Ta0.1O3 is a promising lead-free piezoceramics replacement for lead zirconate titanate.  相似文献   

2.
Lead-free piezoelectric ceramics 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 + xmol% Co3+ (BNBT-Co, x = 0-8) are prepared by the solid state reaction method. Effects of the amount of Co^3+ on the electrical properties and phase transition are studied. The results indicate that the addition of Co^3+ enhances the mechanical quality factor Q^3+ significantly, whereas the dissipation factor tanδ has a minimum value at x = 3.5. Meanwhile, addition of Co^3+ leads to small decreases of piezoelectric constant d33, and planar electromechanical coupling kp. The present 0.92(Bio.aNao.5) TiO3-0.08BaTiO3+3.5 moi% Co^3+ ceramics exhibit good performance with mechanical quality factor Qm = 910, piezoelectric constant d33 = 106pC/N, planar electromechanical coupling kp =10% and dissipation factor tanδ = 1.1% at 1 kHz. Saturated polarization hysteresis loops have been obtained for BNBT-Co ceramics. Two dielectric peaks at depolarization temperature Td and Tm appear in the curves of ε33^T vs temperature for the pure BNBT ceramics. However, the first dielectric peak Td disappears after the addition of Co^3+, which means that the transition from ferroelectric to antiferroelectric phase has been eliminated.  相似文献   

3.
Lead-free piezoelectric ceramics (Na0.53K0.422Li0.048 ) (Nb0.89Sb0.06 Ta0.05 )03 (NKLNST) + x tool SrCO3 are prepared by conventional solid state sintering method. The specimens with pure perovskite structure show tetragonal phase at x 〈 0.01, and become pseudo-cubic phase at x 〉 0.02. A lattice parameter discontinuity is found in the specimens with 0.004 〈 x 〈 0.0075, along with a great improvement in piezoactivity. The 0.004 mol SrCO3 added NKLNST ceramics possesses outstanding performances of kp = 0.53, kt = 0.26, and d33=309 pC/N. Moreover, the Sr^2+ modification inhibits the gra/n growth, decreases the Curie temperature, and induces a diffuse phase transition.  相似文献   

4.
Lead-free (Na0.5K0.5)NbO3-xmol% ScTaO4 (x=0-1.5) ceramics are prepared using the conventional solid-state reaction method and their properties are investigated in detail. The results indicate that the piezoelectric properties and density are improved by the introduction of ScTaO4. Due to the high orthorhombic-tetragonal phase transition temperature TO-T (around 200°C), stable piezoelectric properties against temperature are obtained. In a wide temperature range of 15-160°C, kp of the (Na0.5K0.5)NbO3-0.5mol% ScTaO4 ceramic remains almost unchanged and d31 increases slightly from 59pC/N to 71pC/N. The deliquescent problem is effectively solved by the addition of ScTaO4. The piezoelectric properties of ScTaO4 modified (Na0.5K0.5)NbO3 ceramics show no obvious reduction and dielectric loss increases slightly after 120h of immersion. From the analysis, it is suggested that the density is an important factor that improves the humidity resistance of the specimens.  相似文献   

5.
Lead-free piezoelectric ceramics with the composition of (Na0.53K0.435Li0.035)Nb0.94Ta0.06 O3 (NKLNST) axe synthesized by a conventional solid-state sintering process. An MPB-like region between orthorhombic and pseudocubic phases is found in this system. The density, piezoelectric and dielectric properties axe enhanced greatly in this region. A composition (Na0.53K0.435Li0.035)(Nb0.94Ta0.06)O3 is found to have excellent electrical properties: d33 = 320pC/N, kp= 49% and kt =43%, as well as relatively low loss, tan δ=4.2%, and high relative density higher than 96%, which indicate that this ceramics is a promising lead-free piezoceramics replacing for lead zirconate titanate.  相似文献   

6.
采用氧化固相法制备了(1-x)(Bi0.5Na0.5)TiO3-xBa(Ti0.95Zr0.05)O3(BNT-BZT)陶瓷,其中掺入量x的值分别为0,0.04,0.05,0.06,0.07.研究了BNT-BZT体系陶瓷的准同型相界以及陶瓷材料的微观结构和性能之间的关系,并探讨了陶瓷的介电性能和铁电等性能.通过探究Ba(Ti,Zr)O3(BZT)掺杂量对BNT 各性能的影响得出了当掺杂量x=0.05得到结构较为致密,介电,铁电性能较好的样本,对工业化研究和生产有重要的意义  相似文献   

7.
New lead-free ceramics (Lio.12Na0.88) (Nbo.9-x Ta0.10 Sbx) 03 (0.01 × 0.06) are synthesized by solid-state reaction method. The dielectric, piezoelectric and ferroelectric properties of the ceramics are studied. The dielectric constant dependence with temperature and frequency of the ceramic specimen with x = 0.04 shows typical characteristics of relaxor ferroelectrics, and the Vogel-Fulcher relationship is fulfilled. The dielectric behaviour and its relation to the phase transition phenomena are discussed. The polarization hysteresis loops at room temperature are also measured.  相似文献   

8.
This paper investigates the dielectric properties of (Na0.5K0.5Bi)0.5TiO3 crystal at intermediate frequencies (1kHz \le f \le 1MHz) in the temperature range of 30--560℃. A pronounced high-temperature diffuse dielectric anomaly has been observed. This dielectric anomaly is shown to arise from a Debye-like dielectric dispersion that slows down following an Arrhenius law. The activation energy Er obtained in the fitting process is about 0.69eV. It proposes that the dielectric peak measured at low frequency above 400℃ is not related to the phase transition but to a space-charge relaxation.  相似文献   

9.
Lead strontium titanate (Pb0.50Sr0.50)TiO3 (PST) ceramics are prepared by the traditional ceramic processing. The dielectric constants and dielectric loss have been investigated in a temperature range from 25℃ to 300℃. The maximum dielectric constants for unpoled and poled samples are 9924 and 9683, respectively. The temperatures of phase transition for unpoled and poled samples are observed at 153℃ and 157℃, respectively. The phasetransition temperatures for unpoled and poled samples are not equal, which results from the polarization state of the domains. The remnant polarization and the coercive electric field are 18 uC/cm^2 and 6 kV/cm, respectively, from polarization-electric field (P - E) hysteresis loop. The temperature dependence of pyroelectric coefficients of the PST ceramics is measured by a dynamic technique. The dielectric constant and loss Lan δ of the poled PST ceramics are 813 and 0.010, respectively. The pyroelectric coefficients and figure of merit are 294 uC/cm^2 K and 13.6 × 10^-6 pa^-0.5, respectively, at room temperature 25℃and frequency lOOHz.  相似文献   

10.
The phase structures of lead-free (K0.48Na0.52)0.945Li0.055Sb0.05Nb0.95O3 piezoceramics are studied based on the measurements of ferroelectric and dielectric properties as well as the analyses of x-ray diffraction pattern and energy dispersive spectroscopy. The poled samples exhibit orthorhombic structure whereas the surface and interior for unpoled samples exhibit tetragonal and tetragonal-orthorhombic coexistent structures, respectively. These results are in agreement with the relative permittivity-temperature curves and demonstrate that phase transitions can be induced by Na volatilization and poling process. The remnant polarization Pr measured at 20°C increases continuously with the increase of electric field in the range of 2000-4000V/mm. This indicates that the polymorphic structure is more beneficial to the rotation or reorientation of dipoles than either the orthorhombic or the tetragonal structure. The randomly oriented domains may be the essential reason for the continuous rotation or reorientation and not good thermal stability.  相似文献   

11.
The double-scale lead zirconate titanate (PZT) piezoelectric ceramics were prepared by the solid state processing with PZT nano-crystalline and micro-powder. The microstructures, electrical and mechanical properties of the double-scale PZT are investigated. All the sintered ceramics exhibit a single perovskite structure and the grain size of the dou ble-scale PZT reduces due to the incorporation of PZT nano-crystalline. Compared to normal PZT, the mechanical properties increase significantly and the piezoelectric properties decrease slightly. Mechanisms responsible for the reinforcement of the double-scale PZT are discussed.  相似文献   

12.
The piezoelectric properties of the (KCe)-substituted sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) piezoelectric ceramics are investigated. The piezoelectric properties of NBT ceramics are significantly enhanced by (KCe) substitution. The Curie temperature Tc, and piezoelectric coefficient d33 for the (KCe)-substituted NBT are found to be 663ºC, and 27pC/N, respectively. Dielectric and annealing spectroscopy resent that the (KCe) co-substituted NBT piezoelectric ceramics possess stable piezoelectric properties.  相似文献   

13.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

14.
Polarization hysteresis loops, x-ray diffraction and temperature dependent dielectric constant under different electric fields for <110> oriented 0.7PMN-0.3PT crystals are measured. The field-induced phase transition and the process of depolarization are discussed. The results show that with the electric field E increasing, the single-crystal form changes from the relaxor state of rhombohedral to normal rhombohedral, then to a monoclinic state via polar-axis reorientation and polarization rotation. Orthorhombic phase may present when E≥10kV, but it is an unstable form after E removal. The depolarization process is not just the reversal of the polarization process. It is noticed that only the temperature-dependent dielectric behaviour is not enough to judge the processes of the E-field induced phase transition.  相似文献   

15.
New lead‐free piezoelectric (1 – x)[(K0.4725Na0.4725)Li0.055]NbO3x (Ag0.5Li0.5)TaO3 [(1 – x)KNNL–x ALT] ceramics were prepared by conventional sintering. Piezoelectric and ferroelectric properties and Curie temperature of the ceramics were studied. The (1 – x)KNNL–x ALT (x = 0.04) ceramics exhibit good properties (d33 ~ 252 pC/N, kp ~ 41%, TC ~ 471 °C, To–t = 47 °C, Pr = 33.1 μC/cm2, Ec = 10.6 kV/cm). These results show that (1 – x)KNNL–x ALT (x = 0.04) ceramic is a promising lead‐free piezoelectric material for high temperature application. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Piezoelectric ceramics with compositions of (0.90−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3-0.10PbZrO3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO1) mode and rhombohedral phase Rh mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号