首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembled behavior of symmetric ABA rod-coil-rod triblock copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. The phase diagram is constructed to understand the effects of the chain architecture on the self-assembled behavior. Four stable structures are observed for the ABA rod-coil-rod triblock, i.e., spherelike, lamellar, gyroidlike, and cylindrical structures. Different from AB rod-coil diblock and BAB coil-rod-coil triblock copolymers, the lamellar structure observed in ABA rod-coil-rod triblock copolymer melts is not stable for high volume fraction of the rod component (f(rod)=0.8), which is attributed to the intramolecular interactions between the two rod blocks of the polymer chain. When 0.3相似文献   

2.
The self-consistent field theory (SCFT) complemented with the Poisson-Boltzmann equation is employed to explore self-assembly of polyelectrolyte copolymers composed of charged blocks A and neutral blocks B. We have extended SCFT to dissociating triblock copolymers and demonstrated our approach on three characteristic examples: (1) diblock copolymer (AB) melt, (2) symmetric triblock copolymer (ABA) melt, (3) triblock copolymer (ABA) solution with added electrolyte. For copolymer melts, we varied the composition (that is, the total fraction of A-segments in the system) and the charge density on A blocks and calculated the phase diagram that contains ordered mesophases of lamellar, gyroid, hexagonal, and bcc symmetries, as well as the uniform disordered phase. The phase diagram of charged block copolymer melts in the charge density--system composition coordinates is similar to the classical phase diagram of neutral block copolymer melts, where the composition and the Flory mismatch interaction parameter χ(AB) are used as variables. We found that the transitions between the polyelectrolyte mesophases with the increase of charge density occur in the same sequence, from lamellar to gyroid to hexagonal to bcc to disordered morphologies, as the mesophase transitions for neutral diblocks with the decrease of χ(AB). In a certain range of compositions, the phase diagram for charged triblock copolymers exhibits unexpected features, allowing for transitions from hexagonal to gyroid to lamellar mesophases as the charge density increases. Triblock polyelectrolyte solutions were studied by varying the charge density and solvent concentration at a fixed copolymer composition. Transitions from lamellar to gyroid and gyroid to hexagonal morphologies were observed at lower polymer concentrations than the respective transitions in the similar neutral copolymer, indicating a substantial influence of the charge density on phase behavior.  相似文献   

3.
The self-assembly behavior of ABA coil-rod-coil triblock copolymers in a selective solvent was studied by a Brownian molecular dynamics simulation method. It was found that the rod midblock plays an important role in the self-assembly of the copolymers. With a decrease in the segregation strength, ?(RR), of rod pairs, the aggregate structure first varies from a smecticlike disk shape to a long twisted string micelle and then to small aggregates. The influence of the block length and the asymmetry of the triblock copolymer on the phase behavior were studied and the corresponding phase diagrams were mapped. It was revealed that the variation of these parameters has a profound effect on microstructure. The simulation results are consistent with experimental results. Compared to rod-coil diblock copolymers, the coil-rod-coil triblock copolymers has a larger entropy penalty associated with the interfacial grafting density of the aggregate, leading to a higher ?(RR) value for structural transitions.  相似文献   

4.
While theoretical and experimental efforts have thoroughly addressed microphase‐ordered AB diblock copolymer blends with a parent homopolymer (hA or hB) or a second block copolymer, surprisingly few studies have considered comparable ABA triblock copolymers in the presence of hB or an AB diblock copolymer. In this study, we elucidate the roles of additive molecular weight and constraint by examining three matched series of miscible ABA/hB and ABA/AB blends. Self‐consistent field theory is employed to analyze molecular characteristics, e. g., segmental distributions, microdomain periods and midblock bridging fractions, as functions of blend composition. Predictions are compared to morphological characteristics discerned by transmission electron microscopy and small‐angle X‐ray scattering. The corresponding mechanical properties of these blends are measured by dynamic mechanical analysis. The results of this comprehensive work reveal that addition of hB swells the B‐lamellae of the ABA copolymer and has a generally deleterious effect on both the dynamic elastic modulus and midblock bridging fraction. In contrast, addition of a lamellar or cylindrical AB copolymer to the same ABA copolymer can promote an increase or decrease in lamellar period and bridging fraction, depending on relative block sizes.  相似文献   

5.
We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.  相似文献   

6.
Controlled/"living" polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M(w)/M(n) = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M(w)/M(n) = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 ≤ f(B) ≤ 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly.  相似文献   

7.
采用Monte Carlo模拟方法研究了具有相同链长和组分比的不同嵌段序列的AB两嵌段共聚物与ABA三嵌段共聚物在选择性溶剂中形成囊泡的动力学过程. 模拟结果表明, AB两嵌段共聚物囊泡的形成与ABA三嵌段共聚物囊泡的形成的动力学过程不同. 在慢速退火条件下, ABA三嵌段共聚物囊泡是通过亲水链段向胶束的表面和中心扩散而形成的, 而AB两嵌段共聚物囊泡则由片层弯曲闭合而形成. 相对而言, 退火速度对AB两嵌段共聚物囊泡形成的动力学过程没有显著影响, 其改变仅影响亲水链段与疏水链段发生相分离的难易程度. 当退火速度较快时, 亲水链段和疏水链段发生相分离的速度较快且相分离发生在囊泡形成之前; 而当退火速度较慢时亲水链段和疏水链段之间的相分离在囊泡形成之后仍在进行.  相似文献   

8.
The effects of blend composition on morphology, order-disorder transition (ODT), and chain conformation of symmetric ABA/AB copolymer blends confined between two neutral hard walls have been investigated by lattice Monte Carlo simulation. Only lamellar structure is observed in all the simulation morphologies under thermodynamic equilibrium state, which is supported by theoretical prediction. When the composition of AB diblock copolymer (phi) increases, both lamellar spacing and the corresponding ODT temperature increase, which can be attributed to the variation of conformation distribution of the diblock and the triblock copolymer chains. In addition, both diblock and triblock copolymer, chains with bridge conformation extend dramatically in the direction parallel to the surface when the system is in ordered state. Finally, the copolymer chain conformation depends strongly on both the blend composition and the incompatibility parameter chiN.  相似文献   

9.
Dumbbell-shaped ABA triblock copolymers composed of benzyl ether dendrons and polystyrene as the A and B blocks, respectively, were prepared using 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) -mediated “living” free-radical polymerization. A new bis-dendritic unimolecular initiator, compound 3, was employed to study the efficiency of ABA triblock formation under standard TEMPO-mediated polymerization conditions. By this design, the central B block of the ABA triblock copolymer was grown into the bis-dendritic unimolecular initiator. The ABA triblock copolymer products were separated from their by-products, AB diblock copolymers, by column chromatography on silica gel. The isolated copolymers were characterized using gel permeation chromatography and proton nuclear magnetic resonance spectroscopy as complimentary techniques. That the dendritic-linear AB diblock copolymer was obtained in a mixture with ABA triblock material indicates that TEMPO-terminated dendron counter-radical 5 is an imperfect mediator of this free-radical polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3748–3755, 1999  相似文献   

10.
We theoretically investigate general conditions under which an inorganic phase can direct the self-assembly of an ordered polymer nanocomposite. For this purpose, we consider a solution of triblock copolymers forming a hexagonal phase of micelles and investigate the effect of adding attractive particles. We show that if the triblock is functionalized at its ends by attaching groups with specific affinity for the particles, thus effectively becoming a pentablock, the particles direct the self-assembly of the system into phases where both the polymers and the particles exhibit mesoscopic order. Different lamellar and gyroid phases (both with Ia3d and I4(1)32 space symmetries) are presented in detail. Our results show that functionalization is a very powerful route for directing self-assembly of polymer nanocomposites. We briefly discuss the connections with recent theoretical and experimental results in diblock melts with nanoparticles as well as for problems where polymers are used to template the growth of an inorganic phase in solution.  相似文献   

11.
In this paper, we combine variable cell shape method with dynamic self-consistent field theory and extend to study structure and dynamics under shear for triblock copolymer melts. Due to shear, the calculation cell shape is variable and no longer orthogonal. Pseudospectral method is employed to solve the diffusion equation for chain propagator on the nonorthogonal coordinate and the shear periodical condition can be easily designed in terms of the variable cell shape method. By using this strategy, the shear induced morphology evolution is investigated for topologically complex polymeric systems such as linear and star triblock copolymers; the morphology of linear ABC triblock copolymers is more shear sensitive than that of star triblocks. In particular, once the chain propagator is obtained, the microscopic elastic stress and spatial stress distribution can be derived and thus the dynamic mechanical property can be calculated under shear. By imitating the dynamic storage modulus G' corresponding to any given morphology in the oscillatory shear measurements, we explore the relationship between the morphology and the storage modulus G' and extend to study the mechanism of phase separation dynamics as well as order-disorder transition (ODT) for linear and star triblock copolymers. The results show that the chain architecture can be easily distinguished by investigating the ODT, though the systems such as AB symmetric diblock and ABA triblock copolymers by coupling AB precursors almost exhibit similar microstructures. In addition, the storage modulus G' and loss modulus G" can be simultaneously determined in frequency sweeps of oscillatory shear measurements and the dependence of the moduli on phase separated patterns and the chain topology is investigated. The simulation findings are in qualitatively agreement with the experimental results.  相似文献   

12.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
The dissipative particle dynamics (DPD) simulation method was applied to simulate the aggregation behavior of three block copolymers, (EO)16(PO)18, (EO)8(PO)18(EO)8, and (PO)9(EO)16(PO)9, in aqueous solutions. The results showed that the size of the micelle increased with increasing concentration. The diblock copolymer (EO)16(PO)18 would form an intercluster micelle at a certain concentration range, besides the traditional aggregates (spherical micelle, cylindrical micelle, and lamellar phase); while the triblock copolymer (EO)8(PO)18(EO)8 would form a spherical micelle, cylindrical micelle, and lamellar phase with increasing concentration, and (PO)9(EO)16(PO)9 would form intercluster aggregates, as well as a spherical micelle and gel. New mechanisms were given to explain the two kinds of intercluster micelle formed by the different copolymers. It is deduced from the end-to-end distance that the morphologies of the diblock copolymer and triblock copolymer with hydrophilic ends were more extendible than the triblock copolymer with hydrophobic ends.  相似文献   

14.
The microphase diagrams of special A2B copolymer melts were presented by using the self-consistent field theory for star copolymer systems. Unlike the phase diagram of diblock copolymer, only three classical structures, namely spherical phase, cylindrical phase and lamellar phase were discovered in the diagram of the A2B system. The change in chain architectures allowed sufficient shifts of phase boundaries and widened the range of fB for which lamellar phase occurred, to some degree. Simply, an asymmetric architecture for copolymer allowed control of the morphology independent of the volume fraction.  相似文献   

15.
Tetramerization of coil-rod-coil ABC triblock copolymers to a tetrabranched molecule induces an unusual 3-D tetragonally perforated layered liquid crystalline phase as an intermediate structure between 1-D lamellar and 2-D hexagonal columnar phases.  相似文献   

16.
We study theoretically the lamellar-disorder-lamellar phase transitions of AB diblock and tetrablock copolymers confined in symmetric slitlike pores where the planar surface discriminatingly adsorbs A segments but repels B segments, mimicking the hydrophobic/hydrophilic effects that have been recently utilized for the fabrication of environmentally responsive "smart" materials. The effects of film thickness, polymer volume fraction, and backbone structure on the surface morphology have been investigated using a polymer density-functional theory. The surface-induced phase transition is manifested itself in a discontinuous switch of microdomains or a jump in the surface density dictated by the competition of surface adsorption and self-aggregation of the block copolymers. The surface-induced first-order phase transition is starkly different from the thickness-induced symmetric-asymmetric or horizontal-vertical transitions in thin films of copolymer melts reported earlier.  相似文献   

17.
Multicompartment micelles, especially those with highly symmetric surfaces such as patchy-like, patchy, and Janus micelles, have tremendous potential as building blocks of hierarchical multifunctional nanomaterials. One of the most versatile and powerful methods to obtain patchy multicompartment micelles is by the solution-state self-assembly of linear triblock copolymers. In this article, we applied the simulated annealing method to study the self-assembly of ABC linear terpolymers in C-selective solvents. Simulations predict a variety of patchy and patchy-like multicompartment micelles with high symmetry and also yield a detailed phase diagram to reveal how to control the patchy multicompartment micelle morphologies precisely. The phase diagram demonstrates that the internal segregated micellar structure depends on the ratio between the volume fractions of the two solvophobic blocks and their incompatibility, whereas the overall micellar shape depends on the copolymer concentration. The relationship between the interfacial energy, stretching energy of chains and the micellar morphology, micellar morphological transition are elucidated by computing the average contact number among the species, the mean square end-to-end distances of the whole terpolymers, the AB blocks in the terpolymers, the AB diblock copolymers, and angle distribution of terpolymers. The anchoring effect of the solvophilic C block on micellar structures is also examined by comparing the morphologies formed from ABC terpolymers and AB diblock copolymers.  相似文献   

18.
卢宇源 《高分子科学》2017,35(7):874-886
We use a Monte Carlo method to study the phase and interfacial behaviors of A-b-B diblocks in a blend of homopolymers, A and B, which are confined between two asymmetric hard and impenetrable walls. Our results show that, when the interaction strength is weak, the block copolymersare uniformly distributed in the ternary mixtures under considered concentrations. Under strong interaction strength, distribution region of the block copolymers changes from a single smooth interface to a curved interface or multi-layer interface in the ternary mixtures. Furthermore, our findings show that with increasing volume fraction of A-b-B diblock copolymer(фC), copolymer profiles broaden while фC≥ 0.4, a lamellar phase is formed and by further increasing фC, more thinner layers are observed. Moreover, the results show that, with the increase of фC, the phase interface first gradually transforms from plane to a curved surface rather than micelle or lamellar phase while with the increase of the interaction between A and B segments(ε_(AB)), the copolymer chains not only get stretched in the direction perpendicular to the interface, but also are oriented. The simulations also revealthat the difference between symmetric and asymmetric copolymers is negligible in statistics if the lengths of two blocksare comparable.  相似文献   

19.
樊娟娟  韩媛媛  姜伟 《化学学报》2011,69(19):2341-2346
采用Monte Carlo模拟方法研究了ABA两亲性三嵌段共聚物在两种选择性溶剂中的自组装行为.模拟结果表明,在保证溶剂总浓度一定的情况下,改变两种选择性溶剂的体积比对于ABA两亲性嵌段共聚物自组装所形成的胶束形貌结构有很大影响.随着双选择性溶剂体积比的改变,体系中胶束形貌结构将会发生由囊泡到层状,再到环状、棒状直至球...  相似文献   

20.
采用Monte Carlo模拟方法研究了溶剂尺寸对ABA两亲性三嵌段共聚物在选择性溶剂中自组装行为的影响。模拟结果表明,溶剂尺寸是决定共聚物聚集形态的重要因素之一。随着溶剂尺寸的增大,嵌段共聚物自组装所形成的胶束可以发生从球状到棒状再到囊泡状的转变。通过对各组分的相互作用对数随溶剂尺寸变化曲线的分析发现,增大溶剂尺寸会使溶剂的溶解性变差,由此引发体系中的一系列形态转变。此外,通过对体系自组装形貌结构相图的分析发现,增大溶剂尺寸或增加疏水作用同减小亲水作用对于自组装形态的改变具有同等效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号