首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
In this paper, the iterated conditional modes optimization method of a Markov random field technique for image segmentation is generalized based on Tsallis statistics. It is observed that, for some qq entropic index values the new algorithm performs better segmentation than the classical one. The proposed algorithm also does not have a local minimum problem and reaches a global minimum energy point although the number of iterations remains the same as ICM. Based on the findings of the new algorithm, it can be expressed that the new technique can be used for the image segmentation processes in which the objects are Gaussian or nearly Gaussian distributed.  相似文献   

2.
Hong Fan 《中国物理 B》2021,30(7):78703-078703
To solve the problem that the magnetic resonance (MR) image has weak boundaries, large amount of information, and low signal-to-noise ratio, we propose an image segmentation method based on the multi-resolution Markov random field (MRMRF) model. The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales. The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm, and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation. The results are then segmented by the improved MRMRF model. In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model, it is proposed to introduce variable weight parameters in the segmentation process of each scale. Furthermore, the final segmentation results are optimized. We name this algorithm the variable-weight multi-resolution Markov random field (VWMRMRF). The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness, and can accurately and stably achieve low signal-to-noise ratio, weak boundary MR image segmentation.  相似文献   

3.
目标界面位置信息是闪光照相中关注的内容之一,而闪光图像的低信噪比影响了微结构界面位置的准确提取。研究了基于马尔可夫随机场的闪光图像分割算法,在闪光图像分割过程中采用马尔可夫模型描述被分割像素之间的相关性,减少了由噪声所引起的孤立虚假目标,提出利用中空邻域模板内的起伏定义标号场模型中的基团势函数,改进了闪光图像的分割方法,提高了微结构分割精度。数值实验表明,改进后的马尔可夫随机场分割方法能取得更好的分割结果。  相似文献   

4.
Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号