首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
An investigation of the photophysics of two complexes, [Pt((t)Bu3tpy)(C triple bond C-perylene)]BF4 (1) and Pt((t)Bu2bpy)(C triple bond C-perylene)2 (2), where (t)Bu3tpy is 4,4',4'-tri( tert-butyl)-2,2':6',2'-terpyridine, (t)Bu2bpy is 4,4'-di( tert-butyl)-2,2'-bipyridine, and C triple bond C-perylene is 3-ethynylperylene, reveals that they both exhibit perylene-centered ligand localized excited triplet states ((3)IL) upon excitation with visible light. These complexes do not display any significant photoluminescence at room temperature but readily sensitize (1)O2 in aerated CH2Cl2 solutions, as evidenced by its characteristic emission near 1270 nm. The transient absorption difference spectra were compared to bi- and tridentate phosphine peryleneacetylides intended to model the (3)IL peryleneacetylide excited states in addition to the related phenylacetylide-bearing polyimine analogues, with the latter model being the respective triplet charge-transfer ((3)CT) excited states. The transient difference spectra of the two title compounds display excited-state absorptions largely attributable to perylene localized (3)IL states yet exhibit somewhat attenuated excited-state lifetimes relative to those of the phosphine model chromophores. The abbreviated lifetimes in 1 and 2 may suggest the involvement of the energetically proximate (3)CT triplet state exerting an influence on excited-state decay, and the effect appears to be stronger in 1 relative to 2, consistent with the energies of their respective (3)CT states.  相似文献   

2.
Comprehensive excitation behaviors of 7-N,N-diethylamino-3-hydroxyflavone (I) have been investigated via steady state, temperature-dependent emission, and fluorescence upconversion to probe the excited-state intramolecular proton transfer (PT) reaction. Upon excitation, I undergoes ultrafast (<120 fs), adiabatic type of charge transfer (CT), so that the dipolar vector in the Franck-Condon excited state is much different from that in the ground state. In polar solvents such as CH2Cl2 and CH3CN, early relaxation dynamics clearly reveals the competitive rates between solvent relaxation and PT dynamics. After reaching thermal equilibrium, a relatively slow, solvent-polarity-dependent rate (a few tens of picoseconds(-1)) of PT takes places. Firm support of the early relaxation dynamics is rendered by the spectral temporal evolution, which resolves two distinct bands ascribed to CT and PT emission. The results, in combination with ab initio calculations on the dipolar vectors for various corresponding states, led us to conclude that excited-state normal (N*) and excited proton-transfer tautomer (T*) possesses very different dipole orientation, whereas the dipole orientation of the normal ground state (N) is between that of N* and T*. PT is thus energetically favorable at the Franck-Condon excited N*, and its rate is competitive with respect to the solvent relaxation dynamics induced by CT. Unlike the well-known PT system, 4'-N,N-diethylamino-3-hydroxyflavone, in which equilibrium exists between solvent-equilibrated N(eq)* and T(eq)*, N(eq)* --> T(eq)* PT for I is a highly exergonic, irreversible process in all solvents studied. Further temperature-dependent studies deduce a solvent-polarity-perturbed energy barrier of 3.6 kcal/mol for the N(eq)* --> T(eq)* PT in CH3CN. The proposed dipole-moment-tuning PT mechanism with the associated relaxation dynamics is believed to apply to many PT molecules in polar, aprotic solvents.  相似文献   

3.
2’-Deoxy-5-formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time-resolved mid-IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM-TD-DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine-to-formyl charge-transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark 1nπ* state with a lifetime of ∼3 ps. CT-induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non-radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited-state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands.  相似文献   

4.
Lo KK  Chung CK  Lee TK  Lui LH  Tsang KH  Zhu N 《Inorganic chemistry》2003,42(21):6886-6897
We report the synthesis, characterization, and photophysical and electrochemical properties of thirty luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)(2)(N-N)](PF(6)) (HN-C = 2-phenylpyridine, Hppy; 2-(4-methylphenyl)pyridine, Hmppy; 3-methyl-1-phenylpyrazole, Hmppz; 7,8-benzoquinoline, Hbzq; 2-phenylquinoline, Hpq; N-N = 4-amino-2,2'-bipyridine, bpy-NH(2); 4-isothiocyanato-2,2'-bipyridine, bpy-ITC; 4-iodoacetamido-2,2'-bipyridine, bpy-IAA; 5-amino-1,10-phenanthroline, phen-NH(2); 5-isothiocyanato-1,10-phenanthroline, phen-ITC; 5-iodoacetamido-1,10-phenanthroline, phen-IAA). The X-ray crystal structure of [Ir(mppz)(2)(bpy-NH(2))](PF(6)) has also been investigated. Upon irradiation, all the complexes display intense and long-lived luminescence under ambient conditions and in 77-K glass. On the basis of the photophysical and electrochemical data, the emission of most of these complexes is assigned to an excited state of predominantly triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi(N-N)) character. In some cases, triplet intraligand ((3)IL) (pi --> pi)(N-N or N-C(-)) excited states have also been identified. In view of the specific reactivity of the isothiocyanate and iodoacetamide moieties toward the primary amine and sulfhydryl groups, respectively, we have labeled various biological molecules with a selection of these luminescent iridium(III) complexes. The photophysical properties of the luminescent conjugates have been investigated. In addition, a heterogeneous assay for digoxin has also been designed on the basis of the recognition of biotinylated anti-digoxin by avidin labeled with one of the luminescent iridium(III) complexes.  相似文献   

5.
Temperature dependent luminescence experiments are combined with femtosecond time-resolved transient absorption spectroscopy to decipher the photoinduced excited-state relaxation pathway in mononuclear Fe, Ru and Os terpyridine complexes bearing a conjugated chromophore within the ligand framework. The herein presented complexes constitute a class of coordination compounds, which overcome the poor emission properties commonly observed for most terpyridine transition metal complexes. As reported earlier, the complexes reveal dual emission at room temperature stemming from ligand centered and metal-to-ligand charge-transfer states. The molecular mechanism of the room temperature dual luminescence is addressed experimentally in this contribution. The experimental results indicate an ultrafast branching reaction within the excited-state manifold upon photoexcitation of the ligand-centered S(1) state. This branching occurs from a "hot" excited state geometry close to the Franck-Condon point of absorption and within ~100 fs, i.e. the temporal resolution of our experimental setup. The combination of ultrafast differential absorption experiments and temperature-dependent luminescence data allows not only to draw conclusions about the molecular mechanism underlying the observed dual emission but also to construct quantitative Jablonski diagrams and, thereby, to detail the excited-state topology determining the remarkable luminescence properties of the systems at hand.  相似文献   

6.
A computational study of the ground- and excited-state properties of the mixed-valence complex [(NH 3) 5Ru (III)NCRu (II)(CN) 5] (-) is presented. Employing DFT and TDDFT calculations for the complex in the gas phase and in aqueous solution, we investigate the vibrational and electronic structure of the complex in the electronic ground state as well as the character of the electronically excited states. The relevance of the various excited states for the intervalence metal-metal charge-transfer process in the complex is analyzed based on the change of charge density, spin density, and dipole moment upon photoexcitation as well as by a Mulliken-Hush analysis. Furthermore, those intramolecular modes, which are important for the charge-transfer process, are identified and characterized.  相似文献   

7.
We describe the synthesis, electrochemical, and photophysical properties of two new luminescent Ru(II) diimine complexes covalently attached to one and three 4-piperidinyl-1,8-naphthalimide (PNI) chromophores, [Ru(bpy)(2)(PNI-phen)](PF(6))(2) and [Ru(PNI-phen)(3)](PF(6))(2), respectively. These compounds represent a new class of visible light-harvesting Ru(II) chromophores that exhibit greatly enhanced room-temperature metal-to-ligand charge transfer (MLCT) emission lifetimes as a result of intervening intraligand triplet states ((3)IL) present on the pendant naphthalimide chromophore(s). In both Ru(II) complexes, the intense singlet fluorescence of the pendant PNI chromophore(s) is nearly quantitatively quenched and was found to sensitize the MLCT-based photoluminescence. Excitation into either the (1)IL or (1)MLCT absorption bands results in the formation of both (3)MLCT and (3)IL excited states, conveniently monitored by transient absorption and fluorescence spectroscopy. The relative energy ordering of these triplet states was determined using time-resolved emission spectra at 77 K in an EtOH/MeOH glass where dual emission from both Ru(II) complexes was observed. Here, the shorter-lived higher energy emission has a spectral profile consistent with that typically observed from (3)MLCT excited states, whereas the millisecond lifetime lower energy band was attributed to (3)IL phosphorescence of the PNI chromophore. At room temperature the data are consistent with an excited-state equilibrium between the higher energy (3)MLCT states and the lower energy (3)PNI states. Both complexes display MLCT-based emission with room-temperature lifetimes that range from 16 to 115 micros depending upon solvent and the number of PNI chromophores present. At 77 K it is apparent that the two triplet states are no longer in thermal equilibrium and independently decay to the ground state.  相似文献   

8.
Lo KK  Lau JS 《Inorganic chemistry》2007,46(3):700-709
Four luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)2(N-N)](PF6) (HN-C = 2-(4-(N-((2-biotinamido)ethyl)aminomethyl)phenyl)pyridine, Hppy-4-CH2NHC2NH-biotin, N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline, Me4-phen (1a); N-N = 4,7-diphenyl-1,10-phenanthroline, Ph2-phen (2a); HN-C = 2-(4-(N-((6-biotinamido)hexyl)aminomethyl)phenyl)pyridine, Hppy-4-CH2NHC6NH-biotin, N-N = Me4-phen (1b); N-N = Ph2-phen (2b)), each containing two biotin units, have been synthesized and characterized. The photophysical and electrochemical properties of these complexes have been investigated. Photoexcitation of these iridium(III) diimine bis(biotin) complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence. The emission is assigned to a triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Ir) --> pi*(N-N)) excited state. The emissive states of complexes 1a,b are probably mixed with some 3IL (pi --> pi*) (Me4-phen) character. The interactions of these iridium(III) diimine bis(biotin) complexes with avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays and emission titrations. The potential for these complexes to act as cross-linkers for avidin has been examined by resonance-energy transfer- (RET-) based emission quenching experiments, microscopy studies using avidin-conjugated microspheres, and HPLC analysis.  相似文献   

9.
The photophysical and electrochemical properties of a platinum(II) diimine complex bearing the bidentate diacetylide ligand tolan-2,2'-diacetylide (tda), Pt(dbbpy)(tda) [dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine] (1), are compared with two reference compounds, Pt(dbbpy)(C[triple bond]CPh)(2) (2) and Pt(dppp)tda [dppp = 1,3-bis(diphenylphosphino)propane] (3), respectively. The X-ray crystal structure of 1 is reported, which illustrates the nearly perfect square planarity exhibited by this metallacycle. Chromophore 2 possesses low-lying charge-transfer excited states analogous to 1, whereas structure 3 lacks such excited states but features a low-lying platinum-perturbed tda intraligand triplet manifold. In CH(2)Cl(2), 1 exhibits a broad emission centered at 562 nm at ambient temperature, similar to 2, but with a higher photoluminescence quantum yield and longer excited-state lifetime. In both instances, the photoluminescence is consistent with triplet-charge-transfer excited-state parentage. The rigidity imposed by the cyclic diacetylide ligand in 1 leads to a reduction in nonradiative decay, which enhances its room-temperature photophysical properties. By comparison, 3 radiates highly structured tda-localized triplet-state phosphorescence at room temperature. The 77 K emission spectrum of 1 in 4:1 EtOH/MeOH becomes structured and is quantitatively similar to that measured for 3 under the same conditions. Because the 77 K spectra are nearly identical, the emissions are assigned as (3)tda in nature, implying that the charge-transfer states are raised in energy, relative to the (3)tda levels in 1 in the low-temperature glass. Nanosecond transient absorption spectrometry and ultrafast difference spectra were determined for 1-3 in CH(2)Cl(2) and DMF at ambient temperature. In 1 and 2, the major absorption transients are consistent with the one-electron reduced complexes, corroborated by reductive spectroelectrochemical measurements performed at room temperature. As 3 does not possess any charge-transfer character, excitation into the pipi* transitions of the tda ligand generated transient absorptions in the relaxed excited state assigned to the ligand-localized triplet state. In all three cases, the excited-state lifetimes measured by transient absorption are similar to those measured by time-resolved photoluminescence, suggesting that the same excited states giving rise to the photoluminescence are responsible for the absorption transients. ESR spectroscopy of the anions 1- and 2- and reductive spectroelectrochemistry of 1 and 2 revealed a LUMO based largely on the pi* orbital of the dbbpy ligand. Time-dependent density functional theory calculations performed on 1-3 both in vacuum and in a CH(2)Cl(2) continuum revealed the molecular orbitals, energies, dipole moments, and oscillator strengths for the various electronic transitions in these molecules. A DeltaSCF-method-derived shift applied to the calculated transition energies in the solvent continuum yielded good agreement between theory and experiment for each molecule in this study.  相似文献   

10.
We have unraveled the effects of an amino substituent in the ortho position on the excited-state dynamics of 4-nitropyridine N-oxide by studying the picosecond fluorescence kinetics and femtosecond transient absorption of a newly synthesized compound, 2-butylamino-6-methyl-4-nitropyridine N-oxide, and by quantum chemical calculations. Similar to the parent compound, the S(1) state of the target molecule has significant charge-transfer character and shows a large (approximately 8000 cm(-1)) static Stokes shift in acetonitrile. Analysis of the experimental and the theoretical results leads, however, to a new scenario in which this intramolecular charge transfer triggers in polar, aprotic solvents an ultrafast (around 100 fs) intramolecular proton transfer between the amino and the N-O group. The electronically excited N-OH tautomer is subsequently subject to solvent relaxation and decays with a lifetime of approximately 150 ps to the ground state.  相似文献   

11.
The solvent and temperature dependence of the phototautomerization of 1-methyl-2-(2'-hydroxyphenyl)benzimidazole (4) and the novel compounds 2-(4'-amino-2'-hydroxyphenyl)benzimidazole (1), 2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (2), and 1-methyl-2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (3), together with the ground-state rotamerism and tautomerism of these new compounds, have been studied by UV-vis absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. A solvent-modulated rotameric and tautomeric equilibrium is observed in the ground state for 1, 2, and 3. In cyclohexane, these compounds mainly exist as a planar syn normal form, with the hydroxyl group hydrogen-bonded to the benzimidazole N3. In ethanol, the syn form is in equilibrium with its planar anti rotamer (for 1 and 2), with the phenyl ring rotated 180 degrees about the C2-C1' bond and with a nonplanar rotamer for compound 3. In aqueous solution, a tautomeric equilibrium is established between the anti normal form (or the nonplanar rotamer for 3) and the tautomer (with the hydroxyl proton transferred to the benzimidazole N3). The syn normal form of these compounds undergoes in all the solvents an excited-state intramolecular proton-transfer process from the hydroxyl group to the benzimidazole N3 to yield the excited tautomer. The tautomer fluorescence quantum yield of 2, 3, and 4 shows a temperature-, polarity-, and viscosity-dependent radiationless deactivation, connected with a large-amplitude conformational motion. We conclude that this excited-state conformational change experienced by the tautomer is associated with an intramolecular charge transfer from the deprotonated dialkylaminophenol or phenol (donor) to the protonated benzimidazole (acceptor), affording a nonfluorescent charge-transfer tautomer. Therefore, these compounds undergo an excited-state intramolecular coupled proton- and charge-transfer process.  相似文献   

12.
As part of an effort to develop new lumaphors involving late transition metal ions, this report describes the synthesis and characterization of the first platinum(II) derivatives containing 2,2':6',2'-terpyridine (trpy) and cyanide as co-ligands. According to existing models, including cyanide in the coordination sphere should raise the energies and minimize the influence of short-lived d-d excited states that otherwise compromise the excited-state lifetime. Both [Pt(trpy)(CN)]+ and the 4'-cyano-2,2':6',2'-terpyridine analogue [Pt(CN-T)(CN)]+ are emissive in dichloromethane solution, but the signals are weak. Part of the problem is that the d-pi* charge-transfer excited states also rise in energy, so that the emission actually originates from a (3)pi-pi* state with a relatively low radiative rate constant. However, another member of the series, the 4'-dimethylamino-2,2':6',2'-terpyridine (dma-T) derivative [Pt(dma-T)(CN)]+, proves to be a very promising platform with an emission quantum yield of phi= 0.26 and an excited-state lifetime of tau = 22 micros in room-temperature, deoxygenated dichloromethane solution. In the dma-T complex the electron-rich dimethylamino substituent provides the basis for an emissive, but largely ligand-based, charge-transfer excited state. The orbital parentage is such that the photoluminescence persists in donating solvents like dimethylformamide, which ordinarily quenches d-pi* excited states in complexes of this type.  相似文献   

13.
A series of three geometrically constrained C(2)-symmetric Cu(I) mono-phenanthroline complexes were characterized by X-ray structural analysis, and their photophysical properties were investigated by absorption and emission spectroscopy. Visible light excitation yielded metal-to-ligand charge-transfer (MLCT) excited states with luminescence lifetimes up to 155 ns. Ultrafast transient absorption spectroscopy provided further insights into the excited-state dynamics and suggests for all three complexes the formation of a phenanthroline radical anion. In agreement with electrochemical measurements, the data further indicate that coordinative rearrangements are involved in nonradiative deactivation of the excited states. According to time-dependent density functional theory calculations (B3LYP/6-31G), the major MLCT transitions are polarized along the C(2) axis of the complex and originate predominantly from the copper d(xz) orbital. The computational analysis identifies an excited-state manifold with a number of close-lying, potentially emissive triplet states and is in agreement with the multiexponential decay kinetics of the MLCT luminescence. The relationship between structural and photophysical data of the studied Cu(I) mono-phenanthroline complexes agrees well with current models describing the photophysics of the related Cu(I) bis-diimine complexes.  相似文献   

14.
We report herein the mechanism of the photochemical ligand substitution reactions of a series of fac-[Re(X(2)bpy)(CO)(3)(PR(3))](+) complexes (1) and the properties of their triplet ligand-field ((3)LF) excited states. The reason for the photostability of the rhenium complexes [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) was also investigated. Irradiation of an acetonitrile solution of 1 selectively gave the biscarbonyl complexes cis,trans-[Re(X(2)bpy)(CO)(2)(PR(3))(CH(3)CN)](+) (2). Isotope experiments clearly showed that the CO ligand trans to the PR(3) ligand was selectively substituted. The photochemical reactions proceeded via a dissociative mechanism from the (3)LF excited state. The thermodynamical data for the (3)LF excited states of complexes 1 and the corrective nonradiative decay rate constants for the triplet metal-to-ligand charge-transfer ((3)MLCT) states were obtained from temperature-dependence data for the emission lifetimes and for the quantum yields of the photochemical reactions and the emission. Comparison of 1 with [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) indicated that the (3)LF states of some 3- and 4-type complexes are probably accessible from the (3)MLCT state even at ambient temperature, but these complexes were stable to irradiation at 365 nm. The photostability of 3 and 4, in contrast to 1, can be explained by differences in the trans effects of the PR(3), py, and Cl(-) ligands.  相似文献   

15.
The effects of ligand perdeuteration on the metal-to-ligand charge-transfer (MLCT) excited-state emission properties at 77 K are described for several [Ru(L)(4)bpy](2+) complexes in which the emission process is nominally [uIII,bpy-] --> [RuII,bpy]. The perdeuteration of the 2,2'-bipyridine (bpy) ligand is found to increase the zero-point energy differences between the ground states and MLCT excited states by amounts that vary from 0 +/- 10 to 70 +/- 10 cm(-1) depending on the ligands L. This indicates that there are some vibrational modes with smaller force constants in the excited states than in the ground states for most of these complexes. These blue shifts increase approximately as the energy difference between the excited and ground states decreases, but they are otherwise not strongly correlated with the number of bipyridine ligands in the complex. Careful comparisons of the [Ru(L)(4)(d(8)-bpy)](2+) and [Ru(L)(4)(h(8)-bpy](2+) emission spectra are used to resolve the very weak vibronic contributions of the C-H stretching modes as the composite contributions of the corresponding vibrational reorganizational energies. The largest of these, 25 +/- 10 cm(-1), is found for the complexes with L = py or bpy/2 and smaller when L = NH(3). Perdeuteration of the am(m)ine ligands (NH(3), en, or [14]aneN(4)) has no significant effect on the zero-point energy difference, and the contributions of the NH stretching vibrational modes to the emission band shape are too weak to resolve. Ligand perdeuteration does increase the excited-state lifetimes by a factor that is roughly proportional to the excited-state-ground-state energy difference, even though the CH and NH vibrational reorganizational energies are too small for nuclear tunneling involving these modes to dominate the relaxation process. It is proposed that metal-ligand skeletal vibrational modes and configurational mixing between metal-centered, bpy-ligand-centered, and MLCT excited states are important in determining the zero-point energy differences, while a large number of different combinations of relatively low-frequency vibrational modes must contribute to the nonradiative relaxation of the MLCT excited states.  相似文献   

16.
A pi-extended, redox-active bridging ligand 4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[2,3-a:3',2'-c]phenazine (L) was prepared via direct Schiff-base condensation of the corresponding diamine-tetrathiafulvalene (TTF) precursor with 4,7-phenanthroline-5,6-dione. Reactions of L with [Ru(bpy)(2)Cl(2)] afforded its stable mono- and dinuclear ruthenium(II) complexes 1 and 2. They have been fully characterized, and their photophysical and electrochemical properties are reported together with those of [Ru(bpy)(2)(ppb)](2+) and [Ru(bpy)(2)(mu-ppb)Ru(bpy)(2)](4+) (ppb = dipyrido[2,3-a:3',2'-c]phenazine) for comparison. In all cases, the first excited state corresponds to an intramolecular TTF --> ppb charge-transfer state. Both ruthenium(II) complexes show two strong and well-separated metal-to-ligand charge-transfer (MLCT) absorption bands, whereas the (3)MLCT luminescence is strongly quenched via electron transfer from the TTF subunit. Clearly, the transient absorption spectra illustrate the role of the TTF fragment as an electron donor, which induces a triplet intraligand charge-transfer state ((3)ILCT) with lifetimes of approximately 200 and 50 ns for mono- and dinuclear ruthenium(II) complexes, respectively.  相似文献   

17.
The synthesis and photophysical properties of two new Re(I) complexes are reported: fac-Re(phenC triple-bond CH)(CO)(3)Cl (where phenC triple bond CH is 5-ethynyl-1,10-phenanthroline) and its Au(I)-acetylide analogue (fac-Re(phenC triple-bond CAuPPh(3))(CO)(3)Cl). Also reported are the photophysical measurements obtained for the benchmark fac-Re(phen)(CO)(3)Cl chromophore, as well as the phenC triple-bond CAuPPh(3) and phenC triple-bond CH ligands. The unstable nature of the precursor gold-containing ligand illustrates the advantage of using the "chemistry on the complex" approach, which facilitated preparation of the Re-Au binuclear complex. Where possible, all compounds were studied by static and transient absorption (TA), as well as steady-state and time-resolved photoluminescence (TRPL), at room temperature (RT) and 77 K, as well as nanosecond time-resolved infrared (TRIR) spectroscopy. The spectroscopic information provided by these techniques enabled a thorough evaluation of excited-state decay in most cases. In fac-Re(phenC triple bond CH)(CO)(3)Cl, the RT excited-state decay is most consistent with a metal-to-ligand charge transfer (MLCT) assignment, whereas at 77 K, the lowest excited state is dominated by the triplet intraligand ((3)IL) state, localized within the diimine ligand. The lowest excited state in fac-Re(phenC triple-bond CAuPPh(3))(CO)(3)Cl seems to result from an admixture of Re-based MLCT and (3)IL states resident on the phenC triple-bond CAuPPh(3) moiety. TA and TRIR methods indicate that these excited states are thermally equilibrated at room temperature. At 77 K, the MLCT energy of fac-Re(phenC triple-bond CAuPPh(3))(CO)(3)Cl is increased as a result of the glassy medium and the resulting excited state can be considered to be ligand-localized.  相似文献   

18.
Ultrafast excited-state relaxation dynamics of a nonlinear optical (NLO) dye, (S)-(-)-1-(4-nitrophenyl)-2-pyrrolidinemethanol (NPP), was carried out under the regime of femtosecond fluorescence up-conversion measurements in augmentation with quantum chemical calculations. The primary concern was to trace the relaxation pathways which guide the depletion of the first singlet excited state upon photoexcitation, in such a way that it is virtually nonfluorescent. Ground- and excited-state (singlet and triplet) potential energy surfaces were calculated as a function of the -NO(2) torsional coordinate, which revealed the perpendicular orientation of -NO(2) in the excited state relative to the planar ground-state conformation. The fluorescence transients in the femtosecond regime show biexponential decay behavior. The first time component of a few hundred femtoseconds was ascribed to the ultrafast twisted intramolecular charge transfer (TICT). The occurrence of charge transfer (CT) is substantiated by the large dipole moment change during excitation. The construction of intensity- and area-normalized time-resolved emission spectra (TRES and TRANES) of NPP in acetonitrile exhibited a two-state emission on behalf of decay of the locally excited (LE) state and rise of the CT state with a Stokes shift of 2000 cm(-1) over a time scale of 1 ps. The second time component of a few picoseconds is attributed to the intersystem crossing (isc). In highly polar solvents both the processes occur on a much faster time scale compared to that in nonpolar solvents, credited to the differential stability of energy states in different polarity solvents. The shape of frontier molecular orbitals in the excited state dictates the shift of electron density from the phenyl ring to the -NO(2) group and is attributed to the charge-transfer process taking place in the molecule. The viscosity dependence of relaxation dynamics augments the proposition of considering the -NO(2) group torsional motion as the main excited-state relaxation coordinate.  相似文献   

19.
Pt(II) Schiff base complexes containing pyrene subunits were prepared using the chemistry-on-complex approach. This is the first time that supramolecular photochemical approach has been used to tune the photophysical properties of Schiff base Pt(II) complexes, such as emission wavelength and lifetimes. The complexes show intense absorption in the visible region (ε = 13100 M(-1) cm(-1) at 534 nm) and red phosphorescence at room temperature. Notably, much longer triplet excited state lifetimes (τ = 21.0 μs) were observed, compared to the model complexes (τ = 4.4 μs). The extension of triplet excited state lifetimes is attributed to the establishment of equilibrium between the metal-to-ligand charge-transfer ((3)MLCT) state (coordination centre localized) and the intraligand ((3)IL) state (pyrene localized), or population of the long-lived (3)IL triplet excited state. These assignments were fully rationalized by nanosecond time-resolved difference absorption spectra, 77 K emission spectra and density functional theory calculations. The complexes were used as triplet sensitizers for triplet-triplet-energy-tranfer (TTET) processes, i.e. luminescent O(2) sensing and triplet-triplet annihilation (TTA) based upconversion. The O(2) sensitivity (Stern-Volmer quenching constant) of the complexes was quantitatively evaluated in polymer films. The results show that the O(2) sensing sensitivity of the pyrene containing complex (K(SV) = 0.04623 Torr(-1)) is 15-fold of the model complex (K(SV) = 0.00313 Torr(-1)). Furthermore, significant TTA upconversion (upconversion quantum yield Φ(UC) = 17.7% and the anti-Stokes shift is 0.77 eV) was observed with pyrene containing complexes being used as triplet sensitizers. Our approach to tune the triplet excited states of Pt(II) Schiff base complexes will be useful for the design of phosphorescent transition metal complexes and their applications in light-harvesting, photovoltaics, luminescent O(2) sensing and upconversion, etc.  相似文献   

20.
The synthesis, structural characterization, and photoluminescence (PL) properties of the square-planar terpyridylplatinum(II) complex [ ( t )Bu 3tpyPtCCtpy] (+) ( 1) and the octahedral trinuclear Fe (II) and Zn (II) analogues [Fe( ( t )Bu 3tpyPtCCtpy) 2] (4+) ( 2) and [Zn( ( t )Bu 3tpyPtCCtpy) 2] (4+) ( 3) are described. The photophysical properties of the mononuclear Pt (II) complex 1 are consistent with a charge-transfer excited-state parentage producing a large Stokes shift with a concomitant broad, structureless emission profile. The Fe-based ligand-field states in 2 provide an efficient nonradiative deactivation pathway for excited-state decay, resulting in a nonemissive compound at room temperature. Interestingly, upon chelation of 1 with Zn (II), a higher energy charge-transfer emission with a low-energy shoulder and a 215 ns excited-state lifetime is produced in 3. A spectroscopically identical species relative to 3 was produced in control experiments when 1 was reacted with excess protons (HClO 4) as ascertained by UV-vis and static PL spectra measured at room temperature and 77 K. Therefore, the chelation of Zn (II) to 1 is acid-base in nature, and its Lewis acidity renders the highest occupied molecular orbital level in 1 much less electron-rich, which induces a blue shift in both the absorption and emission spectra. At 77 K, complexes 1, 3, and protonated 1 display at least one prevalent vibronic component in the emission profile (1360 cm (-1)) resembling PL emanating from a ligand-localized excited-state, indicating that these emitting states are inverted relative to room temperature. These results are qualitatively confirmed by the application of time-dependent theory using only the 1360 cm (-1) mode to reproduce the low-temperature emission spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号