首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thorough study concerning O-alkylation and α-bromination of dihydroxyacetophenone (DA) and N-alkylation of 1,2-diazine, under ultrasound (US) and microwave (MW) irradiation as well as under conventional thermal heating (TH) is presented. Under US and MW irradiation the yields are higher, the amount of used solvent decreases substantially, the reaction time decreases considerable (from hours or days to minutes) and the consumed energy decreases, consequently the O-alkylation, α-bromination and N-alkylation methods could be considered environmentally friendly. A selective and efficient way to either bis-O-alkylation or mono-O-alkylation of DA has been found, the relative position of the two hydroxyl groups on the phenyl moiety being compulsory. A selective and efficient way for α-bromination in heterogeneous catalysis of DA derivatives under US irradiation is presented. The N-alkylation reaction of DA under US and MW irradiation proved to be the most convenient setup procedure for these types of reactions. Overall, the use of US proved to be more efficient than MW or TH.  相似文献   

2.
Simultaneous microwave and ultrasound irradiation is shown as a new technique for digestion of solid and liquid samples suitable for chemical and food analysis. Its application in analytical chemistry has been shown by decreases in digestion time: determination of copper in edible oils and total Kjeldahl nitrogen.  相似文献   

3.
A facile sonochemical route for the synthesis of graphene nanosheets via reduction of graphene oxide (GO) has been reported. The synthesized graphene sheets are characterized using UV–vis spectra, Fourier transform infra-red (FT-IR) spectra, transmission electron microscope, X-ray photoelectron spectra (XPS) and Raman spectroscopic techniques. The UV–vis spectroscopy results showed that the absorption peak was red shifted due to the reduction of GO into graphene. FT-IR and XPS spectra revealed the removal of oxygenated functional groups in graphene after the reduction process. Raman spectra confirmed the restoration of new sp2 carbon domains in graphene sheets after the reduction. The sonochemical approach for the synthesis of graphene nanosheets is relatively fast, cost-effective and efficient as compared to other methods.  相似文献   

4.
Ultrasound assisted synthesis of nano-sized lithium cobalt oxide   总被引:1,自引:0,他引:1  
Nano-sized HT-LiCoO(2) powders were prepared by sonochemical synthesis in an aqueous solution of lithium hydroxide containing cobalt hydroxide at approximately 80 degrees C without any further heat treatment at high temperature. The effects of the LiOH concentration, oxidation conditions, ultrasound irradiation time and temperature on the formation of the nano-sized HT-LiCoO(2) phase were investigated. The formation of the HT-LiCoO(2) phase was confirmed by X-ray diffraction and Raman spectroscopy. The TEM images showed the presence of HT-LiCoO(2) aggregates with a mean particle diameter of approximately 20 nm. The reaction mechanism of the ultrasound assisted synthesis of nano-sized LiCoO(2) was proposed on the basis of the XRD, X-ray absorption spectroscopy analysis and TEM observation of the reaction products taken during the course of the synthesis.  相似文献   

5.
The present work establishes in depth study of ultrasound assisted preparation of performic acid (PFA) in a continuous flow microstructured reactor. The influence of various parameters viz. formic acid: hydrogen peroxide molar ratio, flow rate, temperature and catalyst loading on the PFA formation were studied in a continuous flow microstructured reactor. In a continuous microstructured reactor in the presence of ultrasonic irradiation, the formation of PFA was found to be dependent on the molar ratio of formic acid: hydrogen peroxide, flow rate of reactants, temperature and catalyst loading (Amberlite IR-120H). The optimized parameter values are 1:1 M ratio, 50 mL/h, 40 °C and 471 mg/cm3 respectively. Further, the performance of Amberlite IR-120H catalyst was evaluated for three successive cycles in continuous microstructured reactor. The performance of catalyst was found to be decreased with the usage of the catalyst and is attributed to neutralization of the sulfonic acid groups, catalyst shrinkage, or loss in pore sites. The experimental results revealed that, for an ultrasound assisted synthesis of PFA in continuous microstructured reactor the observed reaction time was even less than 10 min. The observed intensification in the PFA synthesis process can be attributed to the intense collapse of the cavities formed at low temperature during ultrasonic irradiations, which further improved the heat and mass transfer rates with the formation of H2O2 during the reaction. The combined use of ultrasound and a continuous flow microstructured reactor has proved beneficial process of performic acid synthesis.  相似文献   

6.
Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate   总被引:1,自引:0,他引:1  
Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ∼1.44 compared to a value of ∼2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ∼16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold.  相似文献   

7.
Sn nanoparticles-stabilized reduced graphene oxide (RGO) nanodiscs were synthesized by a sonochemical method using SnCl2 and graphene oxide (GO) nanosheets as precursors in a polyol medium. TEM and XPS were used to characterize the Sn-stabilized RGO nanodiscs.  相似文献   

8.
Two pillared metal-organic frameworks containing urea functional groups were synthesized by a sonochemical method and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analysis. The time of sonication and concentration of starting materials have been optimized to synthesize nanoparticles of TMU-31 and TMU-32. These two frameworks are interesting candidates for a comparative fluorescence study. Thus, their potential abilities for phenol sensing were investigated. This investigation revealed the prominent roles of hydrogen bond donating urea groups inside the pore cavity in the ability of these structures in phenol sensing.  相似文献   

9.
An ultrasound assisted phase-transfer catalyzed epoxidation of 1,7-octadiene is greatly enhanced by using a cocatalyst of phosphotungstic acid in the presence of hydrogen peroxide in an organic solvent/aqueous solution two-phase medium. An active intermediate of the catalyst (Q3PW12(O)nO40, where Q = R4N+) produced from the reaction of phosphotungstic acid, hydrogen peroxide, and Aliquat 336. A rational mechanism of epoxidation is proposed to account for the reaction from the experimental evidence. The organic-phase reactions, including two series reactions, are the rate-controlling steps to produce two products, viz., 1,2-epoxy-7-octene and 1,2,7,8-diepoxyoctane. The kinetics of epoxidation, including the characteristics of the catalyst and the effect of the amount of cocatalyst, agitation speed, quaternary ammonium salts, amount of Aliquat 336, amount of hydrogen peroxide, amount of chloroform, pH value, organic solvents, and temperature on the conversion of 1,7-octadiene were investigated in detail. A kinetic model was built, from which a pseudo-first-order rate law is sufficient to describe the behavior of the reaction.  相似文献   

10.
Nano plates of zinc(II) based metal-organic framework (MOF) were prepared via ultrasonic method without any surfactants at room temperature and atmospheric pressure. Control of particle size and morphology was enhanced in this synthesis method. Nano plates of an interpenetrated amide-functionalized metal-organic framework, [Zn2(oba)2(bpfb)]·(DMF)5, TMU-23, (H2oba = 4,4′-oxybis(benzoic acid); bpfb = N,N′-bis-(4-pyridylformamide)-1,4-benzenediamine, DMF = N,N-dimethyl formamide), was synthesized under ultrasound irradiation in different concentrations of initial precursor. The nano structure and morphology of the synthesized MOF were characterized by Field Emission Scanning Electron Microscopy (FE-SEM), powder X-ray diffraction, thermo gravimetric analysis (TGA), elemental analysis and FTIR spectroscopy. Moreover, Fluorescence emissions of nanoplates have been studied. Amide-functionalized MOF shows high selectivity for sensing of nitroaromatic compounds such as nitrophenol, nitroaniline, and nitrobenzene in acetonitrile solution. Fluorescence intensity decreased with increasing contents of nitroaromatics in acetonitrile solution due to fluorescence quenching effect.  相似文献   

11.
Esterification is one of the most preferred synthesis routes for organic esters which are most frequently used as plasticizers, solvents and perfumery and flavour chemicals. The present work deals with acid catalyzed synthesis of isopropyl esters from palm fatty acid distillate (PFAD) in the presence of ultrasonic irradiations operating at 25kHz frequency and 1kW of supplied power. Effect of different operating parameters such as molar ratio of reactants, catalyst quantity and operating temperature has been studied with an aim of optimization. It has been observed that ultrasound enhances the rate of reaction and the extent of equilibrium conversion. The optimum parameters for this process have been found to be 1:5 molar ratio of PFAD to isopropanol, catalyst concentration of 5% of PFAD and 60 degrees C reaction temperature. Maximum conversion levels of about 80% have been obtained in 6h of reaction time under these optimized conditions. Analysis of the kinetic data indicates that the reaction follows first order reversible path.  相似文献   

12.
The present work illustrates the transesterification of glycerol to glycerol carbonate (GlyC) from dimethyl carbonate (DMC) using commercial immobilized lipase (Novozym 435) under ultrasonic irradiation. The experiments were performed in a batch reactor placed in an ultrasonic water bath using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound power on the conversion of glycerol to GlyC. It has been found that ultrasound-assisted lipase-catalyzed transesterification of glycerol would be a potential alternative to conventional alkali-catalyzed method, as high conversion (99.75%) was obtained at mild operating conditions: molar ratio of DMC to glycerol 3:1, catalyst amount of 13% (w/w), lower power input (100 W), duty cycle 50% and temperature (60 °C) in a relatively short reaction time (4 h) using Novozym 435 as catalyst. Ultrasound reduces the reaction time up to 4 h as compared to conventional stirring method (14 h) catalyzed by Novozym 435. The repeated use of the catalyst under the optimum experimental condition resulted in decay in both enzyme activity and product conversion.  相似文献   

13.
A simple, facile, efficient and three-components procedure for the synthesis of pyrimido[1,2-a]benzimidazoles and pyrazolo[3,4-b]pyridines utilizing phenylsulfone synthon, under ultrasonic irradiation was developed.  相似文献   

14.
To meet the objectives of the Intergovernmental Panel on Climate Change nations are adopting policies to encourage consumers to purchase electric vehicles. Electrification of the automobile industry reduces greenhouse gases but active metals for the cathode—LiCoO2 and LiNiO2—are toxic and represent an environmental challenge at the end of their lifetime. LiFePO4 (LFP) is an attractive alternative that is non-toxic, thermally stable, and durable but with a moderate theoretical capacity and a low electrical conductivity. Commercial technologies to synthesize LFP are energy-intensive, produce waste that incurs cost, and involve multiple process steps. Here we synthesize LFP precursor with lignin and cellulose in a sonicated grinding chamber of a wet media mill. This approach represents a paradigm shift that introduces mechanochemistry as a motive force to react iron oxalate and lithium hydrogen phosphate at ambient temperature. Ultrasound-assisted wet media milling increases carbon dispersion and reduces the particle size simultaneously. The ultrasound is generated by a 20 kHz,500 W automatic tuning ultrasound probe. The maximum discharge rate of the LFP synthesized this way was achieved with cellulose as a carbon source, after 9 h milling, at 70% ultrasound amplitude. After 2.5 h of milling, the particle size remained constant but the crystal size continued to drop and reached 29 nm. Glucose created plate-like particles, and cellulose and lignin produced spindle-shaped particles. Long mill times and high ultrasound amplitude generate smoother particle surfaces and the powder densifies after a spray drying step.  相似文献   

15.
A novel method has been developed for the preparation of nano-sized TiO2 with anatase phase. Nanoparticles with diameter about 6 nm were prepared at a relatively low temperature (75 °C) and short time. The synthesis was carried out by the hydrolysis of titanium tetra-isopropoxide (TTIP) in the presence of water, ethanol, and dispersant under ultrasonic irradiation (500 kHz) at low intensity. The results show that variables such as water/ethanol ratio, irradiation time, and temperature have a great influence on the particle size and crystalline phases of TiO2 nanoparticles. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV–vis spectroscopy.  相似文献   

16.
Nowadays, there is a growing demand for a cleaner, but still effective alternative for production processes like in the leather industry. Ultrasound (US) assisted processing of leather might be promising in this sense. In the present paper, the use of US in the conventional chrome tanning process has been studied at different pH, temperature, tanning time, chrome dose and US exposure time by exposing the skin before tanning and during tanning operation. Both prior exposure of the skin to US and US during tanning improves the chrome uptake and reduces the shrinkage significantly. Prior exposure of the skin to US increase the chrome uptake by 13.8% or reduces the chrome dose from 8% to 5% (% based on skin weight) and shorten the process time by half while US during tanning increases the chrome uptake by 28.5% or reduces the chrome dose from 8% to 4% (half) and the tanning time to one third compared to the control without US. Concomitantly, the resulting leather quality (measured as skin shrinkage) improved from 5.2% to 3.2% shrinkage in the skin exposed to US prior tanning and to 1.3% in the skin exposed to US during the tanning experiment. This study confirms that US chrome tanning is an effective and eco-friendly tanning process which can produce a better quality leather product in a shorter process time with a lower chromium dose.  相似文献   

17.
The objective of this study was to evaluate the differences in ex-situ (starch treated by ultrasonication and oxidation sequentially, U-OS) and in-situ (starch treated by ultrasonication and oxidation simultaneously, UOS) ultrasonic assisted oxidation process of corn starch, which were studied in contrast to the traditional oxidized starches (OS). Fourier-transform infrared spectra confirmed the successful oxidation of all modified starches samples. In comparison to the OS, the carboxyl contents of U-OS and UOS increased by 56% and 112%, respectively. The same increase trend was also found for the carbonyl contents. The significance raise was attributed to the great increase of pores and specific surface areas in the starch granule after ultrasonic irradiation which promoted the penetration of the sodium hypochlorite into the starch granules with higher chances for chemical reactions. SEM and pore size distribution characterizations further verified this result. However, the method of in-situ ultrasonic assisted oxidation can simultaneously accelerate the increase of pores and the penetration process. Consequently, the starches with higher oxidation degree can be more efficiently prepared by the strategy of in-situ ultrasonic assisted oxidation.  相似文献   

18.
Mesoporous nanocrystalline NiO-Al2O3 powders with high surface area were synthesized via ultrasound assisted co-precipitation method and the potential of the selected samples as catalyst was investigated in dry reforming reaction for preparation of synthesis gas. The prepared samples were characterized by N2 adsorption (BET), X-ray diffraction (XRD), Temperature programmed reduction and oxidation (TPR, TPO) and scanning electron microscopy (SEM) techniques. The effects of pH, power of ultrasound irradiation, aging time and calcination temperature on the textural properties of the catalysts were studied. The sample prepared under specified conditions (pH10, 70 W, without aging time and calcined at 600 °C) exhibited the highest surface area (249.7 m2 g−1). This catalyst was calcined at different temperature and employed in dry reforming of methane and the catalytic results were compared with those obtained over the catalysts prepared by impregnation and co-precipitation methods. The results showed that the catalyst prepared by ultrasound assisted co-precipitation method exhibited higher activity and stability with lower degree of carbon formation compared to catalysts prepared by co-precipitation and impregnation methods.  相似文献   

19.
The present investigation is aimed at ultrasound assisted three phase partitioning (UATPP) of a fibrinolytic enzyme from Bacillus sphaericus MTCC 3672. Three phase partitioning integrates the concentration and partial purification step of downstream processing of a biomolecule. Three phase system is formed with simultaneous addition of ammonium sulfate to crude broth and followed by t-butanol. UATPP of a fibrinolytic enzyme was studied by varying different process parameters such as ammonium sulfate saturation concentration, pH, broth to t-butanol ratio, temperature, ultrasound frequency, ultrasonication power, and duty cycle. The optimized parameters yielding maximum purity of 16.15-fold of fibrinolytic enzyme with 65% recovery comprised of 80% ammonium sulfate saturation, pH 9, temperature 30 °C, broth to t-butanol ratio 0.5 (v/v), at 25 kHz frequency and 150 W ultrasonication power with 40% duty cycle for 5 min irradiation time. SDS PAGE analysis of partitioned enzyme shows partial purification with a molecular weight in the range of 55–70 kDa. Enhanced mass transfer of UATPP resulted in higher fold purity of fibrinolytic enzyme with reduced time of operation from 1 h to 5 min as compared to conventional TPP. Outcome of our findings highlighted the use of UATPP as an efficient biosepartion technique.  相似文献   

20.
ZnO nanorods have been successfully used as an efficient, economic, and reusable catalyst for the synthesis of imidazo[1,2-a]azine under ultrasonic irradiation. This procedure offers advantages in terms of higher yields, short reaction times and mild reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号