首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An achiral crystal of a simple mononuclear copper complex [Cu(II)(C(6)H(8)N(2))(2)SO(4)]·H(2)O (1), on dipping into an aqueous azide solution, transforms into a chiral crystal of a coordination polymer [Cu(II)(C(6)H(8)N(2))(N(3))(2)](n) (2) in a solid-liquid interface reaction demonstrating replacement of a sulfate anion by an azide anion from an aqueous solution.  相似文献   

2.
Dimeric zinc complex 2a [ = Et(2)Zn(2)(1a)(2)] has been synthesized by the reaction of Et(2)Zn and (S)-diphenyl(pyrrolidin-2-yl)methanol (1a-H). X-ray crystallography revealed that the alkoxide ligand replaced one of the two ethyl groups of Et(2)Zn and formed a five-membered chelate ring through a Zn-N dative bond. Two zinc centers were bridged by oxygen atoms to form a Zn(2)O(2) four-membered ring with a syn relationship between the two ethyl groups on the zinc centers. Dimeric zinc complex 2a was an active catalyst for asymmetric alternating copolymerization of cyclohexene oxide and CO(2). An MALDI-TOF mass spectrum of the obtained copolymer showed that the copolymerization was initiated by the insertion of CO(2) into Zn-alkoxide to give [(S)-diphenyl(pyrroridin-2-ly)methoxy]-[C(=O)O-(1,2-cyclohexylene)-O](n)-H (copolymer I), including chiral ligand 1a as an initiating group. Complex 3a-OEt ( = EtZn(1a)(2)ZnOEt), in which an ethoxy group replaced one of the two ethyl groups in 2a, also polymerized cyclohexene oxide and CO(2) with higher catalytic activity and enantioselectivity than 2a and afforded EtO-[C(=O)O-(1,2-cyclohexylene)-O](n)-H ( = copolymer III), including an ethoxy group as an initiating group. Throughout the studies, dimeric zinc species are indicated to be the active species for the copolymerization. It is also depicted that the substituent on the aryl moiety in diaryl(pyrrolidin-2-yl)methanol 2b-e influenced the polymerization activity.  相似文献   

3.
The stability of Pa(V) and U(VI) oxocations in aqueous solution were theoretically investigated by means of density functional theory calculations. As a result, the present calculations clearly supported an experimental result from an energetic point of view that monooxo protactinyl cation, PaO3+, is a preferable species for Pa(V) in aqueous solution, although dioxo protactinyl cation, PaO2+, is not a feasible form. By an analysis of molecular orbitals, we revealed that 6d orbitals of Pa(V) destabilize the pi orbitals of PaO2+, because 6d-2p antibonding orbital conflicts with another 5f-2p bonding orbital. For stable dioxo uranyl cation, UO2(2+), we found that 6d orbitals of U(VI), in contrast, form a bonding orbital with the 2p orbitals, and this bonding orbital coexists at an angle with the 5f-2p bonding orbital due to an electron correlation.  相似文献   

4.
We demonstrate an extreme test of O(2) tolerance for a biological hydrogen-cycling catalyst: the generation of electricity from just 3% H(2) released into still, ambient air using an open fuel cell comprising an anode modified with the unusual hydrogenase from Ralstonia metallidurans CH34, that oxidizes trace H(2) in atmospheric O(2), connected via a film of electrolyte to a cathode modified with the fungal O(2) reductase, laccase.  相似文献   

5.
6,7-Diethoxy-1-[1-(2-methoxyethyl)-2-oxo-1,2-dihydropyridin- 4-yl]naphthalene-2,3-dimethanol [T-440, (1)] is a potential anti-asthmatic agent based on selective phosphodiesterase 4 inhibition. It was necessary for the further evaluation of 1 to develop an efficient synthetic route for 1, especially the construction of the 1-(2-methoxyethyl)-2-pyridone moiety. We examined an N-selective alkylation of pyridone derivative (2) in basic media. 2-Methoxyethylation of 2 with 2-methoxyethyl iodide utilizing LiH as the base gave predominantly an N-alkyl pyridone derivative (3a) in 82% yield (N/O-alkylation=92/8), which is compatible with an ab initio calculation of transition-state structures for the methylation of 2-pyridone. Single crystallization of a crude mixture of 3a and 4a furnished pure 3a, which is a key synthetic intermediate of 1.  相似文献   

6.
The layered compound SrFeO(2) with an FeO(4) square-planar motif exhibits an unprecedented pressure-induced spin state transition (S = 2 to 1), together with an insulator-to-metal (I-M) and an antiferromagnetic-to-ferromagnetic (AFM-FM) transition. In this work, we have studied the pressure effect on the structural, magnetic, and transport properties of the structurally related two-legged spin ladder Sr(3)Fe(2)O(5). When pressure was applied, this material first exhibited a structural transition from Immm to Ammm at P(s) = 30 ± 2 GPa. This transition involves a phase shift of the ladder blocks from (1/2,1/2,1/2) to (0,1/2,1/2), by which a rock-salt type SrO block with a 7-fold coordination around Sr changes into a CsCl-type block with 8-fold coordination, allowing a significant reduction of volume. However, the S = 2 antiferromagnetic state stays the same. Next, a spin state transition from S = 2 to S = 1, along with an AFM-FM transition, was observed at P(c) = 34 ± 2 GPa, similar to that of SrFeO(2). A sign of an I-M transition was also observed at pressure around P(c). These results suggest a generality of the spin state transition in square planar coordinated S = 2 irons of n-legged ladder series Sr(n+1)Fe(n)O(2n+1) (n = 1, 2, 3, ...). It appears that the structural transition independently occurs without respect to other transitions. The necessary conditions for a structural transition of this type and possible candidate materials are discussed.  相似文献   

7.
黄斌  吴亦凡  陈碧波  钱勇  周耐根  李能 《催化学报》2021,42(7):1160-1167,中插38-中插41
由于氨是药物、肥料和树脂等领域的基础,氨合成一直广受关注.工业中主要通过Haber-Bosch反应制备氨,反应需要在高温高压下进行.因此,探索其它氨合成技术对减轻能源消耗和缓解温室效应具有重大意义.在溶液条件下,采用水作为氢质子源,电化学还原氮合成氨方法受到了极大关注.然而,大多数电催化剂难以活化氮气分子且电催化氮气还原过程中存在副反应竞争,因此,研发高效的电催化材料仍然是一个重要研究领域.研究人员探索了多种电催化材料,其中,双原子对催化剂成为电催化领域的研究热点.与单原子催化剂相比,双原子对催化剂不仅具有低配位的金属原子,而且可以通过调节额外分散的金属原子来改善多数电催化反应性能.作为一种新型碳氮材料,二维g-CN具有高表面积、多孔结构以及出色的光学活性和热力学稳定性,可以与金属原子对良好地适配,是一种有潜力的基底材料.然而,目前有关金属双原子对负载在g-CN单层上作为电催化剂催化N2分子还原性能尚不清楚.本文采用密度泛函理论计算研究了N2分子在过渡金属原子对(TM=Sc~Zn)掺杂g-CN单层上的吸附和活化,根据吉布斯自由能详细地研究了电催化合成氨的电化学机理.计算发现,在Fe2@CN和Co2@CN催化剂上,其决速步骤的自由能变化分别为0.47和0.78 eV.对于Fe2@CN,N2电还原反应机制遵循末端路径,而在Co2@CN上,其还原过程为末端或混合路径.由于Co2@CN对析氢反应的抑制效果较好,因此该电催化材料体系极具竞争力.相比于Co2@CN,Fe2@CN具有较好的氮气活化性能,但选择性较差.另外,N2分子与Fe2@CN和Co2@CN之间存在电荷的接受-给予过程,这在活化惰性N2分子中氮原子间的三键上起到了关键作用.第一性原理分子动力学模拟结果表明,Fe2@CN和Co2@CN表现出较高的结构稳定性.因此,本文深入探讨了过渡金属原子对掺杂g-CN单层催化剂上的氮气还原效率及机制,为合理设计该系列的高效、低成本电催化剂提供理论依据.  相似文献   

8.
4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole undergoes ring opening to produce a thioketene intermediate that reacts with an O- or N-nucleophile, forming an ester or an amide of the aryl-substituted thioacetic acid. Intermolecular cyclization of the thioacetic acid derivative via nucleophilic substitution of halogen in the aromatic ring gives an N-substituted indole-2-thiol (in case of an N-nucleophile) or a 2-alkoxy-substituted benzo[b]thiophene (in case of an O-nucleophile). The reaction is also applicable to the synthesis of heterocyclic analogues of N-substituted indole-2-thiols: 1-butyl-1,3-dihydropyrrolo[2,3-b]pyridine-2-thione was synthesized as an example. In the presence of potassium thioacetate (an S-nucleophile) 4-nitro-2-(1,2,3-thiadiazol-4-yl)benzenethiol is formed more quickly than thiadiazole ring opening occurs, making the heterocyclic ring tolerant toward the base.  相似文献   

9.
Iron(II) tris(2-pyridylthio)methanido (1) containing an Fe-C bond, obtained from the reaction of tris(2-pyridylthio)methane (HL(1)) and iron(II) triflate, reacts with protic acid to generate iron(II) bis(2-pyridylthio)carbene (1a). The carbene complex is converted to an iron(II) complex (2) of the 1-[bis(2-pyridylthio)methyl]pyridine-2-thione ligand (L(3)) upon treatment with a base. Complex 2 reversibly transforms to 1a in the presence of an acid. During the transformation of 1 to 2, a novel rearrangement of L(1) to L(3) takes place. The iron(II) complexes are reactive toward dioxygen to form the corresponding iron(III) complexes.  相似文献   

10.
Maeda H  Sugimoto A  Mizuno K 《Organic letters》2000,2(21):3305-3308
Irradiation of a benzene solution containing methyl p-(1-pyrenylmethoxymethyl)cinnamate (1a) with a high-pressure Hg lamp through Pyrex filter stereoselectively gave an intramolecular (2pi + 2pi) photocycloadduct (2a) in an 83% yield in a site-selective manner at the 4,5-position of the pyrene ring. Similar irradiation of an ortho-substituted derivative (3) afforded the corresponding (2pi + 2pi) cycloadduct (4) as a sole product at the 9,10-position of pyrene. The site-selective photocycloaddition can be reasonably explained by the intramolecular sandwich-type singlet exciplexes between the pyrene and phenyl rings.  相似文献   

11.
Patterned after synthetic model systems for dioxomolybdenum enzymes, our theoretical model system produces an energy profile and structures for the various species and oxidation states in the catalytic cycle. A key step in this cycle is the oxo-transfer reaction. Here, our substrate, PMe(3), approaches [Mo(VI)O(2)](2+) at an O-Mo-O-P dihedral angle of 90 degrees, i.e. perpendicular to the MoO(2) plane, crosses over a barrier of 14 kcal/mol, and rotates to an O-Mo-O-P dihedral angle of 0 degrees to form an intermediate, [Mo(IV)O(OPMe(3))](2+), which is 69 kcal/mol more stable than the reactants. The direction of the substrate's attack leaves the two d electrons of this Mo(IV) system in an orbital which is delta with respect to the remaining spectator Mo-O bond, a configuration which allows this O to form a formal triple Mo-O bond. The displacement of the product, OPR(3), by water, H(2)O, proceeds via an associative mechanism with a barrier of only 19 kcal/mol. In our model, [Mo(IV)O(OH(2))](2+) then reacts with [Mo(VI)O(2)](2+) to form [Mo(V)O(OH)](2+), a process which is exothermic by 14 kcal/mol. The addition of O(2) then oxidizes [Mo(V)O(OH)](2+) to [Mo(VI)O(2)](2+) to complete our model catalytic cycle.  相似文献   

12.
A new series of multicomponent ZnPc-Ru(bpy)(3) systems, 1a-c, consisting of a zinc-phthalocyanine linked through conjugated and/or nonconjugated connections to a ruthenium(II) tris(bipyridine) complex, has been synthesized. The ruthenium complexes 1a-c were prepared from phthalocyanines 2a-c, bearing a 4-substituted-2,2'-bipyridine ligand by treatment with [Ru(bpy)2Cl2].2H2O. Different synthetic strategies have been devised to prepare the corresponding dyad precursors (2a-c). Compound 2a, for example, with an ethenyl bridge, was synthesized by statistical condensation of 4-tert-butylphthalonitrile and 5-[(E)-2-(3,4-dicyanophenyl)ethenyl]-2,2'-bipyridine (3) in the presence of zinc chloride. Compounds 2b and 2c, having, respectively, an amide or an ethynyl bridge, were prepared following a different synthetic approach. The method involves the coupling of an appropriate 5-substituted-2,2'-bipyridine to an unsymmetrical phthalocyanine suitably functionalized with an amino (4) or an ethynyl group (5). The photophysical properties of the dyads that are ZnPc-Ru(bpy)3 1a-c and related model compounds have been determined by a variety of steady-state (i.e., fluorescence) and time-resolved methods (i.e., fluorescence and transient absorption). Clearly, intramolecular electronic interactions between the two subunits dominate the photophysical events following the initial excitation of either chromophore. These intramolecular interactions lead, in the case of photoexcited ZnPc, to faster intersystem crossing kinetics compared to a ZnPc reference, while photoexcited [Ru(bpy)3]2+) undergoes a rapid and efficient transduction of triplet excited-state energy to the Pc.  相似文献   

13.
The synthesis and structures of chiral N-heterocyclic carbene (NHC)-N-donor complexes of silver(I) and palladium(II) are reported. The X-ray structure of an NHC-imine silver(I) complex [((nPr)CN(CHPh))AgBr](2) exhibits an Ag(2)Br(2) dimer motif where the imine group is not coordinated to the silver atom. Reaction between 2 and [PdCl(2)(MeCN)(2)] gives the palladium(II) complex [(kappa(2)-(nPr)CN(CHPh))PdCl(2)](3) that contains a chelating NHC-imine ligand as shown by single-crystal X-ray diffraction. Slow hydrolysis of related complexes [(kappa(2)-(nPr)CN(CHPh))PdCl(2)](3) and [(kappa(2)-((Ph)(2)CH)CN(CHPh))PdCl(2)](4) using triethylammonium chloride and water lead to the precipitation of single crystals of insoluble NHC-amino palladium(II) complexes [(kappa(2)-(nPr)CN(H(2)))PdCl(2)](6) and [(kappa(2)-((Ph)(2)CH)CN(H(2)))PdCl(2)](7), respectively. In the solid state, complexes 6 and 7 both exhibit intermolecular hydrogen bonding between chlorine and an amino-hydrogen atom resulting in an infinite chain structure. Substitution of an amino hydrogen for an ethyl group gives the soluble complex [(kappa(2)-(iPr)CN((H)Et))PdCl(2)](12). Reaction between two equivalents of 2 and [PdCl(2)(MeCN)(2)] gives the di-NHC complex [(kappa(1)-(nPr)CN(CHPh))(2)PdCl(2)](5) that does not contain a coordinated imine as shown by single crystal X-ray diffraction. Conproportionation between 5 and an equivalent of [PdCl(2)(MeCN)(2)] to does not occur at temperatures up to 100 degrees C in CD(3)CN.  相似文献   

14.
Treatment of a green solution of the five-coordinate octaethylverdoheme, XFeII(OEOP) 1 (X = Cl or Br), with dioxygen results in the formation of a new iron complex of octaethylbiliverdin, 2, within a matter of minutes. The reaction has been monitored by 1H NMR spectroscopy, and the product 2 (X = Cl) has been isolated and examined by X-ray crystallography. The structure of 2 (X = Cl) shows that the iron is five-coordinate with bonds to the four nitrogen atoms of the helical tetrapyrrole ligand and to an axial chloride. Treatment of 2 (X = Cl or Br) with zinc amalgam produces the known iron(III) complex of biliverdin, {FeIII(OEB)}2. The unusual pattern of resonances in the 1H NMR spectrum of 2 and its facile reduction to {FeIII(OEB)}2 indicate that 2 is an oxidized complex that can be formulated by resonance structures involving either an Fe(IV) ion bound to a bilindione trianion or an Fe(III) ion bound to an oxidized, dianionic, radical form of the ligand.  相似文献   

15.
The reaction of titanium trisamidotriazacyclononane, [Ti{N(Ph)SiMe2}3tacn] (1), with C60 led to the synthesis of [Ti{N(Ph)SiMe2}3tacn]C60 (2) in high yield. Treatment of 2 with PhCH2Br led to the formation of [Ti{N(Ph)SiMe2}3tacn]Br and the radical PhCH2C60 (3). The reaction of CH3I with 1 gives two products. One is [Ti{N(Ph)SiMe2}3tacn]I (4), which results from the oxidation of 1 by an I radical. The other product, 5, resulting from a multistep reaction scheme that involves redox and nucleophilic reactions, presents an imido ligand formed by ligand rearrangement upon C-N bond cleavage. In solution, an exchange process that corresponds to a reversible 1,3-silyl shift between two Ti-bonded N atoms leads to isomers 5a and 5b. This equilibrium transforms an imido (TiNPh) into an amido ligand (Ti{NPh}SiMe2CH2Ph) with concomitant generation of an anionic moiety in the originally neutral triazacyclononane ring. In solution, either 5a or 5b displays additional fluxional processes that consist of its corresponding racemization processes.  相似文献   

16.
Oxidation of Os(2)(hpp)(4)Cl(2), 1 (hpp = the anion of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine), with (FeCp(2))PF(6) produces air-stable [Os(2)(hpp)(4)Cl(2)]PF(6), 2. This is the first structurally confirmed metal-metal bonded paddlewheel compound having an M(2)(7+) core. The Os-Os distances for two crystalline forms, 2.2acetone and 2.hexane, are 2.3309(4) and 2.3290(6) A, respectively. EPR, (1)H NMR, and magnetization data indicate that 2 has an unpaired electron and an exceptionally low g value of 0.791 +/- 0.037. An electrochemical study shows that there is a quasireversible wave corresponding to a more highly oxidized species with an unprecedented Os(2)(8+) core.  相似文献   

17.
The results presented here show that the nature of the axial ligand can alter the distribution of electrons between the metal and the porphyrin in complexes where there is an oxygen atom replacing one of the meso protons. The complexes (1-MeIm)(2)Fe(III)(OEPO) and (2,6-xylylNC)(2)Fe(II)(OEPO(*)) (where OEPO is the trianionic octaethyloxophlorin ligand and OEPO(*) is the dianionic octaethyloxophlorin radical) were prepared by addition of an excess of the appropriate axial ligand to a slurry of [Fe(III)(OEPO)](2) in chloroform under anaerobic conditions. The magnetic moment of (2,6-xylylNC)(2)Fe(II)(OEPO(*)) is temperature invariant and consistent with a simple S = (1)/(2) ground state. This complex with an EPR resonance at g = 2.004 may be considered as a model for the free-radical like EPR signal seen when the meso-hydroxylated heme/heme oxygenase complex is treated with carbon monoxide. In contrast, the magnetic moment of (1-MeIm)(2)Fe(III)(OEPO) drops with temperature and indicates a spin-state change from an S = (5)/(2) or an admixed S = (3)/(2),(5)/(2) state at high temperatures (near room temperature) to an S = (1)/(2) state at temperatures below 100 K. X-ray diffraction studies show that each complex crystallizes in centrosymmetric form with the expected six-coordinate geometry. The structure of (1-MeIm)(2)Fe(III)(OEPO) has been determined at 90, 129, and 296 K and shows a gradual and selective lengthening of the Fe-N(axial bond). This behavior is consistent with population of a higher spin state at elevated temperatures.  相似文献   

18.
The reaction of the phosphorus trihydrazide, (S)P[N(Me)-NH(2)](3) (1) with quinoline-2-carboxaldehyde (C(9)H(6)N-2-CHO) in a 1:3 ratio afforded a trishydrazone, (S)P[N(Me)-N=CH-2-C(9)H(6)N](3) (2). Crystals of 2 were grown in three different solvent media affording an unsolvated (2, monoclinic, P2(1)/n) and two solvated (2·3H(2)O, trigonal, R3 and 2·2CH(3)OH, triclinic, P ?1) crystal forms. Each of these, while possessing an essentially similar molecular structure, adopt different crystal packing giving rise to supramolecular structures mediated by a variety of weak interactions: O-H-N, O-H-O, C-H-N, C-H-O, C-H-S, C-H-π, π-π, N-π and S-π. The reaction of 2 with Ag(ClO(4))(2)·6H(2)O in methanol afforded a dinuclear cationic cage [Ag{(S)P[N(Me)-N=CH-2-C(9)H(6)N](3)}·ClO(4)](2) (3). The molecular structure of 3 reveals a dimeric structure consisting of two Ag(I) ions that are held together by two ligands. Only two arms of the tris hydrazone ligand are involved in coordination while an unprecedented P=S→Ag(I) coordination is seen. This results in the formation of an Ag(2)S(2) dimer that is encapsulated by two trishydrazone ligands. Both compounds 2 and 3 are photoluminescent.  相似文献   

19.
The ligand substitution reaction of [Co(an)6]2+ (an = acetonitrile) with 1,1,3,3-tetramethylurea (TMU) in the noncoordinating solvent, nitromethane, was spectrophotometrically investigated by titration. The observed spectral changes were analyzed using a model with the four steps of ligand substitution. The component complexes involved in the substitution were found to be 6-coordinate [Co(an)6]2+ and [Co(an)5(tmu)]2+, 5-coordinate [Co(an)3(tmu)2]2+ and [Co(an)2(tmu)3]2+, and 4-coordinate [Co(tmu)4]2+. The logarithmic values of the stepwise equilibrium constant are 2.17 +/- 0.26, 1.06 +/- 0.15, 1.19 +/- 0.06, and -0.4 +/- 0.4 at 25 degrees C. The decrease in the coordination number of the Co(II) ion from 6 to 5 during the formation of [Co(an)3(tmu)2]2+ and from 5 to 4 during the formation of [Co(tmu)4]2+ is ascribed to the steric repulsion between the coordinating bulky TMU molecules.  相似文献   

20.
Reaction of d0 Ta(NMe2)5 (1) with O2 yields two aminoxy complexes (Me2N)(n)Ta(eta2-ONMe2)(5-n) (n = 4, 2; 3, 3) as well as (Me2N)4Ta2[eta2-N(Me)CH2NMe2]2(mu-O)2 (4) and (Me2N)6Ta3[eta2-N(Me)CH2NMe2]2(eta2-ONMe2)(mu-O)3 (5) containing novel chelating (aminomethyl)amide-N(Me)CH2NMe2 ligands. The crystal structures of 2-5 have been determined by X-ray crystallography. (Me2N)4Ta(eta2-ONMe2) (2) converts to (Me2N)3Ta(eta2-ONMe2)2 (3) in its reaction with O2. In addition, the reaction of Ta(NMe2)5 with 3 gives 2 only at elevated temperatures. Density functional theory (DFT) calculations have been used to investigate the mechanistic pathways in the reactions of Ta(NMe2)5 (1) with triplet O2. Monomeric reaction pathways in the formation of 2-5 are proposed. A key step is the oxygen insertion into a Ta-N bond in 1 through an intersystem conversion from triplet to singlet energy surface to give an active peroxide complex (Me2N)4Ta(eta2-O-O-NMe2) (A4). The DFT studies indicate that the peroxide ligand plays an important role, including oxidizing an amide to an imine ligand through the abstraction of a hydride. Insertion of Me-N=CH2 into a Ta-amide bond yields the unusual -N(Me)CH2NMe2 ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号