首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stupercapacitors or electrochemical capacitors(ECs) have attracted considerable attentionas an intermediate power source between conventional capacitors and batteries since they possesshigh power density and energy density, exhibit excellent reversibility, and have long cycle life1.Conductive polymers2, electrically conductive metal oxide3,4, activated carbon5 and carbonnanotubes(CNTs) 6-9 have been used as supercapacitor electrode materials. LiNi0.sCo0.2O2 is apromising lithium battery material because it has some advantages of both LiNiO2 and LiCoO2besides its low cost and high power10.In this paper, the electrochemical properties of supercapacitors based on LiNi0.8Co0.2O2/carbonnanotubes composite and LiNi0.8Co0.2O2/acetylene black composite and CNTs in 1 mol/LLiClO4/EC+DEC [V(EC):V(DEC)=1:1] electrolyte have been investigated by means of constantcharge/discharge current tests. The experiment results show that the LiNi0.8Co0.2O2/carbon nanotubescomposite has better properties than others, and the maximun specific capacitance of thesupercapacitor can reach 284.88F/g, while the energy density is up to 158.27Wh/Kg.That discharge capacities, coulombic efficiencies and energy densities at the first cycle and themaximum value and capacity retention at the 100th cycle for supercapacitors using differentelectrode materials (A) LiNi0.8Co0.2O2/acetylene black, (B) LiNi0. 8Co0.2O2/CNTs, (C) CNTs is listedin table 1*Capacity retention rate obtained by dividing the discharge capacity at the 100th cycle by themaximum valueFrom above, the LiNi0. 8Co0.2O2/carbon nanotubes composite should be a good candidatesupercapacitor electrode material.  相似文献   

2.
以具有三维开放网络结构的烧结8 μm-Ni金属纤维(SMF-Ni)为基底, 通过乙烯催化化学气相沉积法在金属纤维表面生长碳纳米管(CNTs), 制备了以金属Ni纤维网络为集流极、CNTs为离子存储库, 尺度跨越宏观、介观和纳米的自支撑薄层大面积CNTs/SMF-Ni(CNTs质量分数为50%)复合电极材料. 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、N2吸附、脱附等温线和X射线衍射(XRD)等方法对电极材料进行了表征, 并考察了其作为电极对质量分数为0.01%的NaCl水溶液的电容脱盐性能. 自支撑CNTs/SMF-Ni复合电极材料由于具有优异的离子传导和表面电荷传递性能以及较大的介孔表面积, 在1.2 V的工作电压和5 mL/min的水溶液流速下, 对NaCl的电吸附容量和脱盐率分别达159 μmol/g CNTs和57%. 用H2O2对CNTs/SMF-Ni电极材料进行氧化处理后, CNTs表面含氧基团的大量增加增大了材料的亲水性, 从而进一步提升了该复合材料的电容脱盐性能.  相似文献   

3.
Nanotube arrays of amorphous vanadium pentoxide (V(2)O(5)) were synthesized via template-based electrodeposition, and its electrochemical properties were investigated for Li-ion intercalation applications. The nanotubes have a length of 10 microm, outer diameter of 200 nm and inner diameter of 100 nm. Electrochemical analyses demonstrate that the V(2)O(5) nanotube array delivers a high initial capacity of 300 mAh/g, about twice that of the electrochemically prepared V(2)O(5) film. Although the V(2)O(5) nanotube array shows a more drastic degradation than the film under electrochemical redox cycles, the nanotube array reaches a stabilized capacity of 160 mAh/g, which remains about 1.3 times the stabilized capacity of the film.  相似文献   

4.
采用溶胶-凝胶法合成了一种V2O5/C复合材料.扫描电镜(SEM)和红外光谱(FTIR)分析表明,这是一种外层V2O5胶体包覆内层乙炔分子的多孔复合材料.以V2O5/C作正极,锌片为负极,Zn(ClO4)2溶液为电解质组成水相锌二次电池,采用循环伏安(CV)和电化学阻抗谱(EIS)等方法研究发现:V2O5:C质量比为1:1时电极具有最好的电化学性能,电池开路电压达1.64 V; Zn2+能分别在1.01 V和1.26 V处分步嵌入V2O5/C结构中A、B两种位置,其嵌入电流密度峰值最高可达70 mA•g-1,并且具有较好的循环充放电性能;在一定放电深度下,V2O5/C电极反应速率受Zn2+的扩散过程控制.  相似文献   

5.
V(2)O(5) nanofilms (NFs) uniformly distributed on N-doped carbon nanotubes (CNTs) exhibit significantly stable capacitive performance; the synthesized composites are promising as an instantaneous power supply in consumer electronics or electrical vehicles.  相似文献   

6.
V(2)O(5) x nH(2)O xerogel films with n = 1.6, 0.6, and 0.3 have been prepared from the sol-gel route by reacting V(2)O(5) with H(2)O(2) followed by drying under ambient conditions and thermal annealing at 110 and 250 degrees C, respectively. After dehydration, V(2)O(5) crystallizes at 300-330 degrees C, as revealed by thermal gravimetric analysis and X-ray diffraction. Electrochemical characterization demonstrated that V(2)O(5) x 0.3H(2)O film exhibits the best Li(+) intercalation performance, with an initial capacity of 275 mAh/g and a stabilized capacity of 185 mAh/g under a high current density of 100 microA/cm(2) after 50 cycles. Under a low current density of 10 microA/cm(2), the capacity of this film can reach 390 mAh/g. Such an enhanced electrochemical property by thermal treatment is ascribed to the reduced water content, the retained interlayer spacing, and the dominant amorphous phase in the film.  相似文献   

7.
In conjunction with environmentally benign ionic liquid electrolytes, vertically-aligned carbon nanotubes (VA-CNTs) sheathed with and without a coaxial layer of vanadium oxide (V(2)O(5)) were used as both cathode and anode, respectively, to develop high-performance and high-safety lithium-ion batteries. The VA-CNT anode and V(2)O(5)-VA-CNT cathode showed a high capacity (600 mAh g(-1) and 368 mAh g(-1), respectively) with a high rate capability. This led to potential to achieve a high energy density (297 Wh kg(-1)) and power density (12 kW kg(-1)) for the prototype batteries to significantly outperform the current state-of-the-art Li-ion batteries.  相似文献   

8.
Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 < x < 0.32) were prepared by careful control of an ion exchange process. The water content (0.23 > n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled.  相似文献   

9.
采用悬浮聚合、炭化、活化制得碳纳米管/活性炭复合微球; 而后利用重氮盐偶合法将对氨基苯磺酸接枝到此复合微球上, 得到磺化碳纳米管/活性炭复合微球; 将其用于吸附血清中的低密度脂蛋白(LDL). 结果表明: 所制备的磺化碳纳米管/活性炭复合微球球形度好, 表面光洁, 中孔发达, 并且接枝有对氨基苯磺酸. 此复合微球对LDL的吸附量随着碳纳米管加入量的增加而逐渐增大; 当碳纳米管加入量为45% (w)时, LDL吸附量达6.564 mg·g-1, 是未添加碳纳米管的3.3倍. 此复合微球在作为血液灌流LDL吸附剂方面有较好的应用前景.  相似文献   

10.
Li4Ti5O12 (LTO)/carbon nanotubes (CNTs) composite material is synthesized based on a solid-state method by sand-milling, spray-drying and calcining at 850 ℃ under N2 flow. The LTO/CNTs samples with 1 wt% and 3 wt% weight ratio of CNTs addition and the pristine LTO sample are prepared. The rate performance and the thermal stability of these samples are investigated based on LiMn2O4 (LMO)/LTO full-cell. The results show that theweight ratio of CNTs addition has distinct effect on LTO performances. The composite materials of LTO composited CNTs have better performance at high-rate due to the intercalation enhancement by conductive network of CNTs. At second, the overcharging temperature response of the cell's surface with 1 wt% CNTs addition is the lowest. The particle size distribution is measured and the most uniform particles are obtained with 1 wt% CNTs addition. This trend could explain that the mediumquantity of CNTs is optimal to improve the heat and mass transfer and prevent the problems of crystallite growing interference and aggregation during the calcination process.  相似文献   

11.
采用溶剂热法制备了碳纳米管穿插的分级结构五氧化二钒空心球(VOCx). 使用XRD、SEM、循环伏安曲线和充放电曲线研究了不同碳纳米管量对产物结构、形貌和电化学性能的影响. 结果表明,碳纳米管的加入明显改善了VOC的倍率特性. 碳纳米管含量为7.1%时,0.5 A·g-1电流密度下,其比电容达到346 F·g-1,8 A·g-1电流密度时,其电容保持率可达75%. 与活性炭组装成混合电容器,在功率密度为700 W·kg-1时,能量密度达12.6 Wh·kg-1.  相似文献   

12.
A novel composite of Fe(2)O(3) and single-walled carbon nanohorns (SWCNHs) was firstly developed via a simple hydrothermal method. As an anode material for lithium ion batteries, a Fe(2)O(3)/SWCNHs composite shows excellent rate performance and cycle stability, even at a high current density of 1000 mA g(-1).  相似文献   

13.
The layered compounds LiCoO2, LiNiO2 and spinel compound LiMn2O4 have served as very effective cathode active materials in lithium ion rechargeable batteries. Generally, their high conductive resistance easily results in a serious polarization and poor utilization of active materials.In order to make full use of the active materials and increase the capacity, the charge-discharge rate and the cycle life of lithium ion batteries, conductive additives are often added into the above cathode materials to form a conductive network. Carbon materials, such as carbon black, graphite powders and chemical vapor deposit carbon fibers have been widely used as conductive additives owing to their high electrical conductivity and chemical inertness. To effectively utilize the active materials, the contents of these carbon additives in the cathode often reach up to 10~20wt%. This leads to a great need for binder, for example, 10wt% or more. It follows therefore a considerable increase in volume of the lithium batteries and lower energy density because of the large amount of carbon additives and binder in the cathode.By substituting carbon nanotubes (CNTs) for carbon black, graphite powders or chemical vapor deposit carbon fibers, much conductive additives and binder are saved, and the cathode with only 3~5wt% of conductive additives CNTs shows excellent rate capacity. At the discharge rate 0.5C,2.0C and 3.0C, the LiCoO2 cathode with CNTs exhibits discharge capacity up to 134mAh/g, 126 and 120mAh/g, respectively. The explanation is given as follows. Firstly, their microstructure and graphitic crystallinity are very important for electron transport. CNTs employed in the experiments comprise an array of complete graphite sheets seamlessly wrapped into cylindrical tubes which are concentrically nested like the rings of a tree trunk. Thus, the process of -electrons transport occurs in graphite sheet in super-conjugative manner when they move from one end to the other end in CNTs. Apparently, the CNTs' microstructure does good to electron transport. On the other hand,being highly graphitic (concluded from XRD patterns), CNTs also displays high electron conductivity. Secondly, being smaller in diameter, CNTs possess much larger number of primary particles in unit mass than other carbon materials. Hence, it results in a lower percolation threshold in the case of CNTs. Finally, owing to their high surface energy, CNTs fallen into nano-materials tend to aggregate and then form firm webs effectively entrapping LiCoO2 particles during the preparation of the cathode to guarantee their close contact with the active materials.Accordingly, effective electron channels are provided to lessen the polarization loss.  相似文献   

14.
Abstract

An interesting nanostructured non-stoichiometric vanadium oxide bronze (CaxV2O5?yH2O) is incorporated as the active material in an aqueous zinc-ion intercalation device. Simple solvothermal synthesis route produces highly crystalline and strongly oriented nanobelt structures as characterized by microscopy. Upon cycling, the cathode materials are recovered for an X-ray absorption investigation of local electronic and geometric changes for both the host vanadium oxide and the intercalated zinc ion as a function of voltage. This multi-edge study presents changes in Zn–O coordination and suggests Zn-ion occupancy site through theoretical calculations. The layered vanadium host shows gradual oxidation state reduction from charge density donation during intercalation while the Zn ion maintains the +2 oxidation state. The findings add understanding to the mechanisms involved in aqueous electrochemical storage devices.  相似文献   

15.
Sodium‐ion energy storage, including sodium‐ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium‐ion energy storage. It is an intriguing prospect, especially for large‐scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d‐spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g?1 over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g?1 over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1–2.5 V.  相似文献   

16.
采用水热辅助溶胶-凝胶工艺,通过原位复合的方法合成了锂离子电池用Li2MnSiO4/CNTs复合正极材料.分析了复合正极材料的形貌和组成特征,并对每摩尔分别复合5,10,20和30 g碳纳米管(CNTs)及未复合CNTs的样品进行了电化学性能测试.结果显示,所合成的Li2MnSiO4颗粒尺寸分布均匀,粒径在100 nm左右,易团聚.但随着CNTs复合量的增加,团聚现象逐渐改善.合成的Li2MnSiO4材料结晶度良好,属于正交晶系Pmn21空间群.电化学测试结果表明,每摩尔复合20 g CNTs的样品电化学性能最佳,在10 mA/g电流密度下,首周放电容量为150 mA.h/g,循环20周后仍保持在80 mA.h/g;CNTs的原位复合可提高Li2MnSiO4材料的导电性能,并改善其电化学性能.  相似文献   

17.
通过三聚氰胺甲醛树脂(MR)中的羟基与石墨烯氧化物(GO)中的羧基发生的沉淀反应来制备功能化的氧化石墨烯前驱体,然后利用溶胶-凝胶及高温热处理方法制备磷酸钒锂/石墨烯复合材料,利用此材料制备了电池电极,并对电极材料进行了结构和电化学表征。结果表明,所得磷酸钒锂为单斜晶系结构,石墨烯堆叠程度显著降低,也有效避免了磷酸钒锂颗粒的团聚,提高了材料的电化学性能。电池的充放电曲线极化较小,在3.0~4.3 V的区间内20 C倍率仍有86 mA·h/g的可逆容量。0.1 C循环100次后容量为119.7 mA·h/g,容量保持率94%。在3.0~4.8 V的高电压区间,10 C倍率下可逆容量80 mA·h/g,0.1 C循环100次后仍有145.6 mA·h/g的可逆容量。优异的循环和倍率性能以及较低的碳含量符合锂离子正极材料实用的要求。  相似文献   

18.
本文采用市售纳米硅为硅源,以软化点低、得碳率高、价格便宜的煤沥青作为碳源,通过两步包覆法制备了煤沥青基硅/碳(Si/C/C)复合物,并研究其作为锂离子电池负极材料的电化学性能。 结果表明,所得复合物的粒径在300~350 nm间,Si纳米粒子被C包覆并相互连结成C-Si-C网络结构,其中Si含量为27%的硅/碳复合物(Si/C/C-27%)作为锂电池电极材料表现了良好的储锂性能。 在0.1 A/g的小电流密度下,Si/C/C-27%的放电比容量为1281 mA·h/g;在3 A/g的大电流密度下,其放电比容量仍能保持在582 mA·h/g,表现了良好的倍率性能。Si/C/C-27%在2 A/g的电流密度下经过100次的循环后其比容量保持率为76.61%,表现了良好的循环稳定性。 相比于煤沥青基碳的一次包覆所得的硅/碳复合材料(Si/C),Si/C/C有效提高了Si纳米粒子的导电性并抑制了其在嵌锂和脱锂过程中的体积膨胀。 本文提出的二次包覆的新方法为制备具有优异电化学性能的锂离子电池负极材料提供了新的研究思路。  相似文献   

19.
Well-known vanadium(IV)- and vanadium(V)-citrate complexes have been employed in transformations involving vanadium redox as well as nonredox processes. The employed complexes include K(2)[V(2)O(4)(C(6)H(6)O(7))(2)] x 4H(2)O, K(4)[V(2)O(4)(C(6)H(5)O(7))(2)] x 5.6H(2)O, K(2)[V(2)O(2)(O(2))(2)(C(6)H(6)O(7))(2)] x 2H(2)O, K(4)[V(2)O(2)(C(6)H(4)O(7))(2)] x 6H(2)O, K(3)[V(2)O(2)(C(6)H(4)O(7))(C(6)H(5)O(7))] x 7H(2)O, (NH(4))(4)[V(2)O(2)(C(6)H(4)O(7))(2)] x 2H(2)O, and (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)] x 6H(2)O. Reactions toward hydrogen peroxide at different vanadium(IV,V):H(2)O(2) ratios were crucial in delineating the routes leading to the interconversion of the various species. Equally important thermal transformations were critical in showing the linkage between pairs of dinuclear vanadium-citrate peroxo as well as nonperoxo complexes, for which the important vanadium(V)-assisted oxidative decarboxylation, leading to reduction of vanadium(V) to vanadium(IV), seemed to be a plausible pathway in place for all the cases examined. FT-IR spectroscopy and X-ray crystallography were instrumental in the identification of the arising products of all investigated reactions. Collectively, the data support the existence of chemical links between different and various structural forms of dinuclear vanadium(IV,V)-citrate complexes in aqueous media. Furthermore, in corroboration of past studies, the examined interconversions lend credence to the notion that the involved species are active participants in the respective aqueous distributions of the metal ion in the presence of the physiological ligand citrate. The concomitant significance of structure-specific species relating to soluble and potentially bioavailable forms of vanadium is mentioned.  相似文献   

20.
本文以多孔碳纳米管/活性炭复合微球为载体, 以L-色氨酸为配基, 采用环氧氯丙烷偶联法, 制得修饰L-色氨酸的碳纳米管/活性炭复合微球(L-CNTs/AC)。采用扫描电镜、氮气吸附、傅立叶红外光谱、热分析、X射线光电子能谱等对复合微球进行表征;通过体外静态吸附法对其低密度脂蛋白(LDL)吸附能力进行初步研究。结果表明:环氧氯丙烷偶联法可接枝上L-色氨酸。复合微球中碳纳米管加入量越多, 对LDL的吸附能力越强;当碳纳米管加入量为45wt%时, 对LDL的吸附量达4.623 mg·g-1, 是未添加碳纳米管的2.3倍多。这是因为碳纳米管不仅可促进复合微球中20~100 nm孔的形成, 而且还可促进复合微球配基修饰量的增多, 从而大大增强了复合微球对LDL的吸附能力。此复合微球可望开发成一种新型的血液灌流LDL吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号