首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase formation in the system HfO(NO3)2-H3PO4-RbF-H2O was studied along the sections at the molar ratios PO 4 3? /Hf = 0.5, 1.0, 1.5, 2.0, and 3.0 and RbF: Hf = 1?5. The initial solutions contained 2–10 wt % HfO2. The synthesis was performed at room temperature. The following substances were obtained for the first time: crystalline fluorophosphatehafnate RbHfF2PO4 · 0.5H2O, crystalline triple salt HfF4 · Rb(PO4)0.33 · RbNO3, crystalline solvate Rb3Hf3(PO4)5 · 3HF, and amorphous fluorophosphate Hf3O2F2(PO4)2 · 8H2O (formula is conditional). The compounds were studied by crystal-optical, elemental, X-ray diffraction, thermogravimetric, IR spectroscopic, and electron microscopic analyses.  相似文献   

2.
We studied phase formation in the ZrO(NO3)2-H3PO4-RbF-H2O system along PO43−/Zr = 0.5 (mol/mol) and RbF/Zr = 1–5 (mol/mol) sections with 2–10 wt % ZrO2 in the starting solution. We recovered amorphous rubidium oxofluorophosphatozirconate Rb2Zr3OF6(PO4)2 · 2H2O and the following fluorophosphatonitratozirconates: Rb2ZrF4(PO4)0.33NO3, which forms large cubic system crystals; weakly crystallized RbZr3OF3(PO4)2(NO3)2 · 5H2O; and amorphous Zr3OF3(PO4)2NO3 · (7–8) H2O. A shown by its IR spectrum, Rb2ZrF4(PO4)0.33NO3 contains NO3- and PO4 groups that are not coordinated to zirconium, meaning that this is a triple salt ZrF4 · Rb(PO4)0.33 · RbNO3. The formula units of the RbZr3OF3(PO4)2(NO3)2 · 5H2O and Zr3OF3(PO4)2NO3 · (7–8)H2O phases are only conventional. All compounds have been recovered for the first time.  相似文献   

3.
The phase formation in the system HfO(NO3)2-H3PO4-CsF(HF)-H2O was studied along the sections at the molar ratios PO 4 3? /Hf = 0.5, 1.5, and 2.0 and RbF:Hf = 1?C5, and also in the presence of HF at CsF: Hf = 1. The initial solutions contained 2?C24 wt % HfO2. The synthesis was performed at room temperature. The following substances were isolated: crystalline cesium fluorophosphate hafnates CsHf2F6PO4 · 4H2O, CsHfF2PO4 · 0.5H2O, and CsH2Hf2F2(PO4)3 · 2H2O; X-ray amorphous cesium fluorophosphate hafnate of the average composition Cs2Hf3O1.5F5(PO4)2 · 5H2O; and X-ray amorphous cesium fluorophosphate nitrate hafnate Cs5H4Hf3F7(PO4)3.66(NO3)3 · 5H2O. The compositions of the amorphous phases should be refined. Cesium fluorophosphate hafnates were obtained for the first time. The compounds were studied by crystal-optical, elemental, X-ray diffraction, IR spectroscopic, and electron microscopic analyses.  相似文献   

4.
Phase formation in the ZrO(NO3)2-NaF(HF)-H3PO4-H2O system was studied at 20°C and 2.0–14.5 wt % ZrO2 in the initial solution along sections with molar ratios PO 4 3? /Zr = 0.5 and 1.5 and also in the presence of hydrogen fluoride at Na/Zr = 1 and PO 4 3? /Zr = 0.5, 1.0, and 1.5. Crystalline zirconium hydrophosphate Zr(HPO4)2 · H2O, fluorozirconates Na5Zr2F13 and Na7Zr6F31 · 12H2O, fluorophosphatozirconates NaH2Zr3F3(PO4)4 · 3H2O and NaZr2F6(PO4) · 4H2O, and amorphous NaZrO0.5F(PO4) · 4H2O (provisional composition) were separated at room temperature. NaH2Zr3F3(PO4)4 · 3H2O and NaZr2F6(PO4) · 4H2O were prepared for the first time and were studied by crystal-optical, elemental, and thermal analyses, X-ray powder diffraction, IR spectroscopy, scanning electron microscopy (SEM), and X-ray microanalysis. Na7Hf6F31 · 12H2O was found to exist in a mixture with the hydrophosphate.  相似文献   

5.
Potassium fluorophosphate hafnates (PFPH) K3H3Hf3F3(PO4)5 and KHf2F3(PO4)2 · 2H2O were synthesized for the first time, and a KZr2F3(PO4)2 · 2H2O phase was found to exist. The compounds were studied by crystal-optical, elemental, X-ray powder diffraction, thermogravimetric, IR spectroscopic, and electron microscopic analyses. It was found that PFPH crystallize as one-dimensional nanoparticles. The IR spectra showed that PFPH K3H3M3F3(PO4)5 (M = Zr, Hf) are crystal solvate K3M3(PO4)5 · 3HF. Annealing of K3H3Hf3F3(PO4)5 and KHf2F3(PO4)2 · 2H2O at 1000°C gives rise to mixtures that mostly contain various phosphate hafnates.  相似文献   

6.
The thermal stability of cesium fluorophosphatohafnates (crystalline CsHf2F2(HPO4)2PO4 · 2H2O, CsHfF2PO4 · 0.5H2O, CsHf2F6PO4 · 4H2O and X-ray amorphous Cs2Hf3O1.5F5(PO4)2 · 5H2O, Cs5H4Hf3F7(PO4)3.66(NO3)3 · 5H2O) was determined. The weight ratios Cs+/Hf and PO 4 3? /ZrHf in CsHf2F2(HPO4)2PO4 · 2H2O were confirmed by identifying the calcination production CsHf2(PO4)3 (~1000°C). A new crystalline compound CsHf2F(HPO4)(PO4)2 was found by thermogravimetric and X-ray powder diffraction analysis during heating. A new method for hydrothermal synthesis of CsHf2(PO4)3, which was different from the already known one, was proposed. It was ascertained that CsHf2(PO4)3 possesses a significant X-ray luminescence; whereas in fluorophosphatehafnates show low luminescence intensity.  相似文献   

7.
The ZrO(NO3)2-H3PO4-CsF-H2O system was studied at 20°C along the section at a molar ratio of PO43−/Zr = 0.5 (which is of the greatest interest in the context of phase formation) at ZrO2 concentrations in the initial solutions of 2–14 wt % and molar ratios of CsF: Zr = 1−6. The following compounds were isolated for the first time: crystalline fluorophosphates CsZrF2PO4 · H2O, amorphous oxofluorophosphate Cs2Zr3O2F4(PO4)2 · 3H2O, and amorphous oxofluorophosphate nitrate CsZr3O1.25F4(PO4)2(NO3)0.5 · 4.5H2O. The compound Cs3Zr3O1.5F6(PO4)2 · 3H2O was also isolated, which forms in a crystalline or glassy form, depending on conditions. The formation of the following new compounds was established: Cs2Zr3O1.5F5(PO4)2 · 2H2O, Cs2Zr3F2(PO4)4 · 4.5H2O, and Zr3O4(PO4)1.33 · 6H2O, which crystallize only in a mixture with known phases. All the compounds were studied by X-ray powder diffraction, crystal-optical, thermal, and IR spectroscopic analyses.  相似文献   

8.
The system ZrO(NO3)2-H3PO4-KF(HF)-H2O was studied at ∼20°C along sections at molar ratios of PO43− = 0.5, 1.0, and 1.6; KF: Zr = 1−5; and HF: Zr = 2−6. Phases in precipitates were identified by X-ray powder diffraction; IR spectroscopy; and crystal-optical, chemical, X-ray fluorescence and thermal analyses. The following crystalline phases were isolated: potassium fluorozirconates K3ZrF7, K2ZrF6, δ-KZrF5, and KZrF5 · H2O; zirconium hydrophosphate Zr(HPO4)2 · 0.5H2O; and potassium fluorophosphate zirconate K3Zr3F3(HPO4)3(PO4)2. The following amorphous basic oxo(hydroxo)fluorohydrophosphate nitrates were isolated: K4Zr4O2.5F8(HPO4)2(NO3)3 · 6H2O, K2Zr3O3F2(HPO4)2(NO3)2 · H2O, and KZr3O1.5F3(HPO4)2(NO3)3 · 2H2O. Fields of solid phases were constructed, and the roles of anions and cations in the phase formation were considered.  相似文献   

9.
The phase formation in the system ZrO(NO3)2-H3PO4-CsF(HF)-H2O was studied at the molar ratio CsF/Zr = 1 along the sections PO 4 3? /Zr = 0.5 and 1.5 at a ZrO2 concentration in the initial solution of 2?C14 wt %. The following compounds were isolated: Cs5Zr4F21 · 3H2O, CsZr2(PO4)3 · 2HF · 2H2O, CsZrF2PO4 · H2O, CsZr2F6PO4 · 4H2O (for the first time), CsHZrF3PO4 (for the first time), Cs0.70ZrF(PO4)1.23 · nH2O, and CsHZr2F2(PO4)2.66 · nH2O. The compositions of CsZrF2PO4 · H2O, Cs0.70ZrF(PO4)1.23 · nH2O, and CsHZr2F2(PO4)2.66 · nH2O are conditional. All the compounds were characterized by crystal-optical, X-ray powder diffraction, thermal analyses, and IR spectroscopy. The formula CsHZrF3PO4 was established by energy-dispersive analysis with a LEO-1450 scanning electron microscope and an MS-46 CAMECA X-ray microanalyzer.  相似文献   

10.
The thermodynamic parameters of ion exchange have been estimated for HZr2(PO4)3 · H2O and the products of its aliovalent doping. Ion exchange occurs via formation of the (H3O1 ? xNax)Zr2(PO4)3 solid-solution series. As in the case of ion exchange on layered zirconium phosphate (Zr(HPO4)2 · H2O), the interdiffusion coefficient and the major interfacial defect generation processes are considerably affected by the contact-solution pH.  相似文献   

11.
Crystalline cesium fluorophosphatozirconates (CFPZs) CsZr2F6PO4 · 4H2O, CsZrF2PO4 · 0.5H2O, CsH2Zr2F2(PO4)3 · 2H2O, and amorphous Cs2Zr3OF6(PO4)2 · 3H2O were synthesized, and their thermal stability and luminescence ability were studied. The compositions of initial CsH2Zr2F2(PO4)3 · 2H2O and Cs2Zr3OF6(PO4)2 · 3H2O were refined. CsZr2O0.5F5PO4, CsHZr2F(PO4)3, CsZr2(PO4)3, and Cs2Zr3OF6(PO4)2 crystalline intermediates, which are comparable with BaSO4 and CaF2 luminophors in the context of their X-ray luminescence intensity, were recognized by thermal analysis and X-ray powder diffraction under heating.  相似文献   

12.
Rubidium fluorophosphatozirconates (RFPZs) were synthesized along sections of the ZrO2-H3PO4-RbF-H2O system where PO 4 3? /Zr = 1–2 (mol/mol) and RbF/Zr = 1–5 (mol/mol) and the initial solution contains 2–5 wt % ZrO2. The following RFPZs have been isolated for the first time: RbZrF2PO4 · 0.5H2O, Rb3H3Zr3F3(PO4)5, and RbZr3F4(PO4)3 · 1.5H2O. Their formation fields were determined. The compounds were characterized using powder X-ray diffraction, crystal-optical analysis, chemical analysis, electron probe microanalysis, thermal analysis, and IR spectroscopy. Luminescent properties of the compounds were measured. All RFPZs are orthophosphates, have high thermal durability, and X-ray luminescence (XRL). Rb3H3Zr3F3(PO4)5 has the highest XRL intensity.  相似文献   

13.
The deterioration of zinc, zinc—calcium and manganese phosphate coatings and oxalate coatings on steel on heating was investigated by conversion electron Mössbauer spectrometry. and the chemical change of the coatings was analysed on the basis of the thermal characteristics of Zn3(PO4)2·4H2O, Zn2Fe(PO4)4·4H2O, CaZn2(PO4)2·2H2O, Fe3(PO4)2·8H2O. (Mn, Fe)5H2(PO4)4·4H2O and FeC2O4·2H2O. The steel substrate beneath the coatings influenced the thermal decomposition and evaporation of coating materials under the various heating atmospheres. The heat resistance of these coatings and the state of the substrate were also investigated.  相似文献   

14.
Structures and Thermal Behaviour of Alkali Metal Dihydrogen Phosphate HF Adducts, MH2PO4 · HF (M = K, Rb, Cs), with Hydrogen Bonds of the F–H…O Type Three HF adducts of alkali metal dihydrogen phosphates, MH2PO4 · HF (M = K, Rb, Cs), have been isolated from fluoroacidic solutions of MH2PO4. KH2PO4 · HF crystallizes monoclinic: P21/c, a = 6,459(2), b = 7,572(2), c = 9,457(3) Å, β = 101,35(3)°, V = 453,5(3) Å3, Z = 4. RbH2PO4 · HF and CsH2PO4 · HF are orthorhombic: Pna21, a = 9,055(3), b = 4,635(2), c = 11,908(4) Å, V = 499,8(3) Å3, Z = 4, and Pbca, a = 7,859(3), b = 9,519(4), c = 14,744(5) Å, V = 1102,5(7) Å3, Z = 8, respectively. The crystal structures of MH2PO4 · HF contain M+ cations, H2PO4 anions and neutral HF molecules. The H2PO4 anions are connected to layers by O–H…O hydrogen bonds (2,53–2,63 Å), whereas the HF molecules are attached to the layers via very short hydrogen bonds of the F‐H…O type (2,36–2,38 Å). The thermal decomposition of the adducts proceeds in three steps. The first step corresponds to the release of mainly HF and a smaller quantity of water. In the second and third steps, water evolution caused by condensation of dihydrogen phosphate is the dominating process whereas smaller amounts of HF are also released.  相似文献   

15.
From solutions containing 2–17 wt % TiO2 at the molar ratios M/Ti = 1–4, F/Ti = 2–4, and PO 4 3? /Ti = 0.5–10 under mild conditions, fluoro- and oxo(hydroxo) fluorophosphate titanates were isolated: crystalline M2TiF6 (M = K, Rb, Cs) and K2Ti2O2.5F2PO4 · 2H2O, and amorphous K3Ti4O(OH)F7(PO4)3 · 5H2O, Cs2Ti3O2F7PO4 · 6H2O, and CsTi3O3F4PO4 · 3H2O. In a mixture with M2TiF6 and KCl, phosphate-ion-containing crystalline phases of unidentified composition were detected. The phases were studied by elemental, crystal-optical, X-ray powder diffraction, thermal, IR spectroscopic, and electron microscopic analyses. Annealing fluorophosphate titanates gives a mixture of MTiOPO4 and TiO2. All the mentioned alkali metal fluorophosphates contain the tetrahedral ion PO 4 3? and titanium polyhedra with bonds Ti-F and Ti-O; some of them also contain bridging oxygen connecting titanium atoms: Ti-O-Ti; i.e., these substances are polymeric.  相似文献   

16.
The dehydration of Ca(H2PO4)2·H2O was examined with simultaneous DTA and TG. This dehydration permitted clearly the apparation of the following phases: Ca(H2PO4)2·0.5H2O, Ca(H2PO4)2, Ca3(HP2O7)2, Ca2HP3O10 et Ca(PO3)2. The reaction of Ca(H2PO4)2·H2O and CaSO4 was also examined with the same technics. It was found that the decomposition of CaSO4 takes place for relatively low temperature (between 600°C and 800°C).  相似文献   

17.
31P, 19F, 1H NMR is used to study fluorophosphatometalates of the composition MHfF2PO4·0.5H2O (M = Rb, Cs) and CsMe2F6PO4·4H2O (Me = Zr, Hf). The data obtained indicate the isostructurality of compounds in each of these two groups. The lines in the NMR spectra are assigned. Assumptions about the character of the bond of PO4 groups and F atoms with Me are made and schemes of the crystal structure of fluorophosphatometalates are proposed. The occurrence of several types of crystallization water characterized by different bond strengths and energy barriers of the diffusion motion is found.  相似文献   

18.
The CaCl2-(NH4)2HPO4-NH4HCO3-(C6H11NO4) n -H2O system at 25°C has been investigated by the solubility (Tananaev’s residual concentration) method and pH measurements. Coprecipitation conditions have been determined for nanocrystalline type A and B calcium carbonate apatites. Type A: Ca10(PO4)6(CO3) x (OH)2 − 2x · yC6H11NO4 · zH2O (x = 0.2, 0.5, 1.0; y = 0.1, 0.3, 0.5; z = 5.3−6.7); type B: Ca10[(PO4)5.7(CO3)0.45]CO3 · 0.3C6H11NO4 · 9H2O, and Ca10[(PO4)5.55(CO3)0.675]CO3 · 0.3C6H11NO4 · 9.2H2O. The solid phases have been characterized by chemical analysis, X-ray diffraction, thermogravimetric analysis, and IR spectroscopy.  相似文献   

19.
Fluorophosphatometallates with the composition K3H3Zr3F3(PO4)5, Rb3H3Zr3F3(PO4)5, Rb3H3Hf3F3(PO4)5, CsH2Hf2F2(PO4)3?2H2O are studied by 31P, 19F, and 1H NMR. It is found that protons enter in the composition of hydrophosphate groups and fluorine atoms occupy the terminal sites in the tetravalent metal environment. Schemes of the crystal structure of fluorophosphatometallates are proposed. It is established that in CsH2Hf2F2(PO4)3?2H2O water molecules are bonded to the phosphate group proton via a strong hydrogen bond and are characterized by a low energy barrier of molecular motions.  相似文献   

20.
The solubility in the quaternary water–salt system Zr(SO4)2 · 4Н2О–Na2SO4–H2SO4–H2O at 25°C was studied. It was found that, in the system, there is crystallization of not only Na2SO4 and Zr(SO4)4 · 4H2O, but also sodium sulfate zirconates Na2Zr(SO4)2(OH)2 · 0.3H2O, Na4Zr(SO4)4 · 3H2O, and Na2Zr(SO4)2 · 3H2O and two new compounds, S1 and S2, which are presumably Na2ZrO(SO4)2 · 2H2O and Na2Zr2O2(SO4)3 · 6H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号