首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The reactions of pentaphenylantimony with succinic, malic, and tartaric acids (mole ratio 2: 1) in toluene afford bis(tetraphenylantimony) succinate (I), malate (II), and tartrate (III) in yields of 98, 92, and 94%, respectively. According to the X_ray diffraction analysis results, molecules I and II are centrosymmetric. In compound II, the hydroxy group in the acid residue is disordered over two positions. Crystal III includes two types of crystallographically independent molecules (a and b). The antimony atoms in compounds I, II, IIIa, and IIIb have distorted trigonal bipyramidal coordination modes. The axial angles CaxSbOax are 166.80(8)° (I); 174.8(2)° (II); 176.4(4)°, 177.4(3)° (IIIa); and 173.3(4)°, 172.7(4)° (IIIb). The equatorial angles CeqSbCeq vary in the ranges 99.3(1)°–154.5(1)° (I); 115.2(2)°–123.3(2)° (II); 115.7(4)°–123.3(4)° 115.2(5)°–125.6(5)° (IIIa); and 107.9(4)°-129.1(4)°, 113.7(4)°-124.8(5)° (IIIb). The Sb-C and Sb-O bonds are 2.138(3)-2.176(3), 2.319(2) Å (I); 2.111(6)–2.163(5), 2.243(4) Å (II); 2.072(13)–2.169(11), 2.252(7), 2.284(7) Å (IIIa); and 2.047(11)–2.190(11), 2.224(7), 2.256(7) Å (IIIb). The intramolecular distances Sb…O=C are 2.528(3) (I); 3.267(7) (II); 3.381(7), 3.436(7) (IIIa); and 3.351(7), 3.162(7) Å (IIIb). For structures I, II, and III, the CIF files are CCDC 929151, 941542, and 941543, respectively.  相似文献   

2.
Fourteen bis(citrato)germanates(IV) and bis(citrato)stannates(IV) were prepared, in particular, [M(H2O)6][Ge(HCit)2] · 4H2O (M = Mg (I), Mn (II), Fe (III), Co (IV), Ni (V), Cu (VI), Zn (VII)) and [M(H2O)6][Sn(HCit)2] · nH2O (M = Mg, n = 4 (VIII); Mn, n = 2 (IX); Fe, n = 4 (X); Co, n = 4 (XI); Ni, n = 4 (XII); Cu, n = 4 (XIII); Zn, n = 3 (XIV)) (H4Cit is citric acid). The purity and the composition of the products were determined by a set of physicochemical methods including elemental analysis, thermogravimetry, and IR spectroscopy. The structures of I, II, IV, VI, VII, VIII, XI, and XII were determined by X-ray diffractometry. All eight crystals composed of centrosymmetrical octahederal [M(H2O)6]2+ cations, [Ge(HCit)2]2? (or [Sn(HCit)2]2?) anions, and crystal water molecules are isostructural. The structural units in I, II, IV, VI, VII, VIII, XI, and XII are connected by systems of hydrogen bonds to form a three-dimensional framework.  相似文献   

3.
Accurate “ab initio” calculations (MP2 method) were performed to outline the conformational profile of a number of six-membered cyclic allyl epoxides differing either in the nature of the cycle fragment (Y) bound to the unsaturation, or in the substitution at the endocyclic carbon bound to the epoxy ring and bridging the epoxy ring with the Y fragment. In particular, we calculated structures 4 (Y=CH2), 5 (Y=O), 6 (Y=NH), 7 (Y=S), 8 (Y=CF2), 9 (Y=NH2 +), 10 (Y=CO), 11 (Y=BH) and 12 (Y=NCOOH), where the fragment of the endocyclic carbon bridging “Y” and the epoxy fragment is either non-substituted (4a 12a) or bears a methyl side chain trans (4b12b) or cis (4c12c) to the epoxidic oxygen. Saturated analogs (Y=O and Y=CH2) were also computed to test the method and to evaluate the conformational profile in the absence of the unsaturation. Minimum energy conformations were found which differ in the relative position of the Y group and the epoxy oxygen, with respect to a plane containing the epoxy ring carbons and the adjacent saturated endocyclic carbon: they may be on the same side (conformer A) or on opposite sides (conformer B). Conformers A are generally more stable. The conjugation effect of Y with the double bond lowers the barrier between the two conformers to the extent that in a few cases only conformer A is associated with a minimum of energy. On the basis of the elongation of the allylic oxirane C–O bond, we postulated the order of reactivity of epoxides 412 in the oxirane ring-opening process, and a mechanism based on the more reactive conformer A. A comparison was also made between MP2 and DFT calculation methods.  相似文献   

4.
This work describes the synthesis, characterisation and reactivity of new methylallyl Pd(II) complexes that contain bidentate 2-(methylthio-N-benzylidene)anilines as ligands. The reaction of the binuclear complex [(η3-Me-allyl)Pd(μ-Cl)2] with AgBF4 causes the total abstraction of the chloride bridges, with the subsequent formation of an intermediary fragment of Pd(II). This fragment in turn reacts with neutral bidentate 2-(methylthio-N-benzylidene)anilines to give cationic complexes of Pd(II) of general formula [(η3-Me-allyl)Pd(η2-S,N-MeSC6H4NCHC6H4(X)Y)]BF4 [X=H, Y=H (1); X=F, Y=H (2); X=Me, Y=H (3); X=H, Y=Cl (4); X=H, Y=Me2N (5); X=H, Y=NO2 (6)]. The new complexes were characterised by means of elemental analysis, IR, NMR [1H, 19F{1H}, 13C{1H}, 31P{1H}, Dept, 1H-1H-COSY, HSQC, HMBC] and mass spectroscopies. The reaction of the Pd(II) complexes with nucleophiles such as NaI, (EtO)2PS2K, KCN, KSCN or NaH lead to the deco-ordination of the bidentate ligands to give dimeric or polymeric complexes of Pd(II). The reactivity pattern observed is discussed by a theoretical analysis based on Fukui functions.  相似文献   

5.
The gas-phase reactions of the reactive λ 3-phenyl(trifluoromethyl)iodonium (PhI+(III)CF3, 1 at m/z 273) to the radical cation of iodobenzene (PhI?+, 2 at m/z 204) via the loss of ·CF3 and the radical cation of trifluoromethylbenzene (PhCF3 ?+, 3 at m/z 146) via the loss of ·I, were studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Interestingly, the gas-phase intramolecular coupling reaction of CF3 with phenyl via the CF3 migration process of 1 at m/z 273 from iodine to the phenyl to give 3 at m/z 146 could only occur according to an intramolecular aromatic substitution mechanism. Density functional theory (DFT) calculations showed that the gas-phase intramolecular aryltrifluoromethylation of 1 at m/z 273 to 3 at m/z 146 occurred via a Meisenheimer complex intermediate (MC), where the triplevalent I center of 1 was reduced to monovalent I. Most importantly, the structure of 3 at m/z 146 derived from 1 at m/z 273 in ESI-MS/MS process was confirmed by comparison of its MS/MS with that of an authentic PhCF3 ?+ at m/z 146 acquired from the electron ionization (EI)-MS/MS analysis of PhCF3. Thus, our studies revealed the intrinsic reactivity tendencies of λ3-phenyl(trifluoromethyl)iodonium under solvent-free conditions.   相似文献   

6.
Title compounds of the type 2,3,5,6-tetraphenyl-1,4-di-X-1,4-di-Y-1,4-disilacyclohexa-2,5-diene wherein X=Y=NMe2 (4); X=NMe2, Y=Cl (cis, trans-5); X=NMe2, Y=Me [(trans)-6] and X=t-Bu, Y=Cl (trans-8) were synthesized from Si2(NMe2)5Cl, sym-Si2(NMe2)4Cl2, sym-Si2(NMe2)4Me2, and sym-Si2Cl4(t-Bu)2, respectively, in the presence of diphenylacetylene at 200 °C. Similarly the analogous title compound from the combination of 1-phenyl-1-propyne and Si2(NMe2)5Cl [X=Y=NMe2 (cis and trans-7) was synthesized. In all cases where cis/trans diastereomers could arise from two different silicon substituents (5, 6, 8) the trans isomer was the sole or dominant product. Evidence for the intermediacy of the silylene Si(NMe2)2 in these reactions was gained from a trapping experiment. Compound 4 upon treatment with SiCl4, SiBr4 or PI3 provided the corresponding 1,1,4,4-tetrahalo derivatives 9a-c, respectively. Treatment of 4 with MeOH or PhOH gave the 1,1,4,4-tetramethoxy and tetraphenoxy analogues 9d and 9e, respectively. The tetrachloro derivative 9a upon LAH reduction led to the corresponding tetrahydro compound 10, while the reaction of 9a with H2O gave the tetrahydroxy derivative 11. Allowing (trans)-6 to react with SiCl4 provided a ca. 1:1 cis/trans ratio of the derivative 12 in which X=Cl, Y=Me, and possible pathways that rationalize this loss of stereochemistry are proposed. Synthesis of trans-13 in which X=t-Bu, Y=H was achieved by LAH reduction of 8. All of the title compounds except 8 experience free phenyl rotation at room temperature. At −30 °C this rotation in 8 is essentially halted. The molecular structures of 4, 8, 9c, 9e, 10 and 13 were determined by X-ray crystallography.  相似文献   

7.
Isomeric structures, energies, and properties of silacyclopropylidenoids, C2H4SiMX (where M?=?Li or Na and X?=?F, Cl or Br), were studied ab initio at the HF and MP2 levels of theory using the 6-31+G(d,p) and aug-cc-pVTZ basis sets. The calculations indicate that each of C2H4SiMXs has three stationary structures: silacyclopropylidenoid (S), tetrahedral (T), and inverted (I). All of the silacyclopropylidenoid (S) forms are energetically more stable than others except that S-LiF is by only 0.7?kcal/mol higher in energy than I-LiF. In contrast, all of the tetrahedral (T) forms are the most unstable ones except for T-NaF. Energy differences between S, T, and I forms range from 0.70 to 8.70?kcal?mol?1 at the MP2/6-31+G(d,p) level. In addition, the molecular electrostatic potential maps, natural bond orbitals, and frontier molecular orbitals were calculated at the MP2/6-31+G(d,p) level.  相似文献   

8.
The immobilization of N,O-prolinate ruthenium benzylidene complexes as hybrid silicas is reported according to three routes: (i) co-condensation of a silylated precursor, 10, with TEOS via the sol–gel process (material M1); (ii) grafting of the same precursor on a preformed mesoporous silica M2 (material M3); entrapment of a parent non-silylated compound, 8, in the preformed mesoporous silica M2 (material M4). They have been characterized by several techniques. Solid state 29Si NMR measurements ensure the anchorage of the Ru-complexed prolinate fragment in the silica matrix of M1 and M3 by the presence of T and Q sites, while only Q sites are observed as expected for M4. Elemental analyses provide the N/Si ratios and TGA experiments give the weight loss of the organics during decomposition and hence indicating the amount of organics inserted in the materials. Adsorption–desorption analyses show that these solids had surface areas ranging from 310 to 620 m2g?1.These materials were tested as solid catalysts for two different reactions: ring-closing olefin metathesis and hydrosilylation of phenylacetylene with HSiEt3. Their recyclability has also been investigated. While M1 is the less active for the first reaction giving low conversions and selectivity compared to M3 and M4, it is by far the most efficient catalyst for the second reaction.  相似文献   

9.
Reactions of (norbornadiene)Cr(CO)4 or cis-(piperidine)2Mo(CO)4 with R2Sb-SbR2, and cyclo-(R′Sb)n (R′ = Et, n-Pr; n = 4, 5) give the complexes cyclo-[M(CO)4(R2Sb-SbR′- SbR′-SbR2)] (1: M = Cr, R = Me, R′= Et; 2: M = Mo, R = Et, R′ = Et; 3: M = Mo, R = Et, R′ = n-Pr). Not accessible to established characterization methods, the oily, extremely reactive unpurified mixture of 3 with scrambled ligands was characterized by mass spectrometry using liquid injection field desorption ionization (LIFDI).   相似文献   

10.
Photocatalysis of biscarbonylrhenium complexes cis,trans-[Re(dmbpy)(CO)2(PR3) (PR′3)]+ (dmbpy=4,4′-dimethyl-2,2′-bipyridine: R, R′=Ph (1a +); p-FPh (1b +); R=Ph, R′=OEt (1c +); R, R′=O-i-Pr (1d +)) is reported for the first time. The rhenium complexes with two triarylphosphine ligands (1a +, 1b +) efficiently photocatalyzed CO2 reduction with triethanolamine as a sacrificial donor. On the other hand, the complexes with one or two trialkylphosphite ligand(s) (1c +, 1d +) had low photocatalytic abilities under the same reaction conditions.  相似文献   

11.
Using cyclic voltammetry method, the reduction of cationic η6-fluorene complexes of manganese [(η6-9-R-C13H9)Mn(CO)2L]PF6 (L = CO, R = H (1 +); L = CO, R = CH3 (2 +); L = PnBu3, R = H (3 +); L = CO, R = tBu (4 +)) is studied. It is shown that, depending on the nature of a substituent in the position 9 of the fluorene ligand, the reduction occurs either with the detachment of an H atom from position 9 to give zwitterion compounds (complexes 1 ±, 2 ±, 3 ±) or with the attachment of an H atom into the coordinated ring of the fluorene ligand to given η5-cyclohexadienyl complex (η5-9-tBu-C13H9)Mn(CO)3 (5).  相似文献   

12.
The ??-complexes [CuCl(C3H5NHC2H4CN)] (I), [(C3H5NH2C2H4CN)Cu2Cl3] (II), [((C3H5)2NHC2H4CN)CuCl2] (III), and [((C3H5)2NHC2H4CN)CuBr2] (IV) are obtained as single crystals by the ac electrochemical synthesis on copper wire electrodes from ethanolic solutions of 3-(allylamino)propanenitrile, 3-(diallylamino)propanenitrile, and CuX2 (X = Cl, Br). Their crystal structures are determined. The crystals of compounds I, III, and IV are monoclinic, space group P21/c, Z = 4. The crystals of compound II are triclinic, space group P $\bar 1$ , Z = 2. The unit cell parameters are a = 11.125(4), b = 8.769(4), c = 8.570(4) ?, ?? = 90.94(4)°, V = 835.9(6) ?3 (I); a = 6.2566(4), b = 7.5975(6), c = 11.1251(8) ?, ?? = 90.896(6)°, ?? = 92.827(5)°, ?? = 94.340(5)°, V = 526.57(7) ?3 (II); a = 11.656(4), b = 6.992(4), c = 14.681(5) ?, ?? = 100.89(4)°, V = 1174.9(9) ?3 (III); a =11.845(4), b = 7.282(4), c=14.855(5) ?, ?? = 100.37(4)°, V = 1260.4(9) ?3 (IV). The coordination mode of the Cu(I) atom in complex I includes two halogen atoms, the C=C bond, and the secondary amine N atom. The coordination environment in isostructural crystals of complexes III and IV is formed by the C=C bond and three halogen atoms as in complex II.  相似文献   

13.
Quantum mechanical and Rice-Ramsperger-Kassel-Marcus (RRKM) calculations are carried out to study the thermal unimolecular decomposition of oxetane (1), 2-methyloxetane (2), and 2,2-dimethyloxetane (3) at the MPW1PW91/6-311 + G** level of theory. The results of the calculations reveal that decomposition reaction of compounds 1?C3 yields formaldehyde and the corresponding substituted olefin. The predicted high-pressure-limit rate constants for the decomposition compounds 1?C3 are represented as 6.61 × 1013exp(?32472/T), 9.33 × 1013exp(?29873/T), and 4.79 × 1013exp(?27055/T) s?1, respectively. The fall-off pressures for the decomposition of compounds 1?C3 are found to be 9.42 × 10?2, 3.67 × 10?3, and 7.26 × 10?4 mm Hg, respectively. As the fall-off pressure of the decomposition process of compounds 1?C3 are in the following order: P 1/2(1) > P 1/2(2) > P 1/2(3); therefore the decomposition rates are as follow: rate(1) < rate(2) < (3).  相似文献   

14.
A series of novel 2H-pyrazolo[4,3-c]hexahydropyridine derivatives (II) have been designed and synthesized. The target compounds have been identified by elemental analysis and spectral (1H NMR, IR, and MS) data and the absolute configuration of compound (II 1 ) was confirmed by single crystal X-ray diffraction. The cytotoxicity of the target compounds have been evaluated in vitro against two human breast cancer cell lines MCF-7 and MDA-MB-231 by MTT assay. Most compounds exhibited good inhibition, and compounds II 21 (IC50 = 4.7 μM for MCF-7 and IC50 = 9.3 μM for MDA-MB-231), II 33 (IC50 = 2.4 μM for MCF-7 and IC50 = 4.2 μM for MDA-MB-231) and II 40 (IC50 = 3.3 μM for MCF-7 and IC50 =8.6 μM for MDA-MB-231) displayed better inhibitory activity than 5-fluorouracil (IC50 = 4.8 μM for MCF-7 and IC50 = 9.6 μM for MDA-MB-231, respectively). Flow cytometric analysis and DNA fragmentation suggest that II 33 is cytotoxic and able to induce the apoptosis of MCF-7 cells. The fluorescence properties of compounds II 1 , II 6 , II 11 , II 16 , II 23 , II 28 , and II 35 were also studied and compound II 28 afforded the highest photoluminescence quantum yield (38%).  相似文献   

15.
The reaction of triphenylantimony with propiolic acid in the presence of hydrogen peroxide (molar ratios 1 : 2 : 1 and 1 : 1 : 1) in diethyl ether affords triphenylantimony dipropiolate Ph3Sb[OC(O)C≡CH]2 (I) and μ2-oxobis[(propiolato)triphenylantimony] [Ph3SbOC(O)C≡CH]2O (II). Tetraphenylantimony propiolate Ph4SbOC(O)C≡CH (III) is synthesized from pentaphenylantimony and propiolic or acetylenedicarboxylic acid in toluene. According to the X-ray diffraction data, the crystals of compounds I and III include two types of crystallographically independent molecules (a and b). The antimony atoms in molecules Ia, Ib, II, IIIa, and IIIb have the trigonal-bipyramidal coordination mode with different degrees of distortion. The OSbO and OSbC axial angles are 176.8(2)° (Ia, Ib), 170.17(15)°, 178.78(14)° (II), and 173.2(5)°, 174.4(5)° (IIIa, IIIb). The CSbC equatorial angles lie in the ranges 108.2(3)°–143.1(3)° (I), 109.0(2)°–131.0(2)° (II), and 113.1(4)°–125.4(4)° (III). The SbOSb angle in II is 141.55(19)°. The Sb-C bond lengths are 2.103(8)–2.141(5) (I), 2.105(5)–2.119(5) (II), and 2.076(12)–2.166(13) Å (III). The Sb-O distances increase in a series of I, II, and III: 2.139(6)–2.156(7) (Ia, Ib); 2.206(4), 2.218(3) (II); and 2.338(10), 2.340(10) Å (III).  相似文献   

16.
Four new fluorochromatouranylates, namely, K[UO2(CrO4)F] · 1.5H2O (I), Rb[UO2(CrO4)F] · 1.5H2O (II), Rb[UO2(CrO4)F] · 0.5H2O (III), and Cs[UO2(CrO4)F] · 0.5H2O (IV), have been synthesized, and their crystallographic characteristics have been determined. All the compounds crystallize in monoclinic system, space group P21/c, with the unit cell parameters a = 13.1744(5) Å, b = 9.4598(3) Å, c = 13.0710(4) Å, β = 103.746(1)°, Z = 4, R = 0.0235 (I); a = 13.5902(7) Å, b = 9.5022(4) Å, c = 13.2271(6) Å, β = 102.914(2)°, Z = 4, R = 0.0247 (II); a = 24.7724(8) Å, b = 12.6671(4) Å, c = 9.4464(3) Å, β = 97.661(1)°, Z = 8, R = 0.0448 (III); a = 25.725(1) Å, b = 12.8261(5) Å, c = 9.4929(4) β = 97.208(1)°, Z = 8 (IV). The pairs of compounds I and II and compounds III and IV are isostructural. Crystals of compounds I–III have been subjected to complete X-ray diffraction study. It has been established that the structures of compounds I–III are built of [UO2(CrO4)F] n n? layers, which are parallel to the (100) plane and linked into a framework by alkali-metal cations located between layers, together with water molecules. The effect of topological and geometric isomerism on the structural features of 34 known uranyl compounds of the AT3M2 crystallochemical group, to which the studied compounds I–III also belong, is discussed.  相似文献   

17.
Ten new N-nicotinyl and N-isonicotinyl phosphoramidates with formula XP(O)R2, X?=?Nicotinamide(nia), R?=?NHCH2Ph (1), N(CH3)CH2Ph (2), NHCH(CH3)Ph (3), NH-CH2C4H3O (4), NHCH2(C5H4N) (5), 3-NH-C5H4N (6), and YP(O)R2, Y?=?isonicotinamide(iso), R?=?NHCH2Ph (7), N(CH3)CH2Ph (8), NHCH(CH3)Ph (9), NH-CH2C4H3O (10) plus one new Er(III) complex with formula Er(L)2(NO3)3 (11), L?=?(iso)PO(NHCH2C4H3O)2 (10), were synthesized and characterized by elemental analysis and 1H, 13C, 31P NMR, IR, UV?Cvis spectroscopy. Crystal structures of compounds 10 and 11 were also determined by X-ray crystallography. Interestingly, the 1H NMR spectra of compounds 1, 2, 6, 7, 9 indicated long-range n J P,H (n?=?5,6,7) coupling constants, in the range of 1.4?C1.9?Hz, for the splitting of pyridine ring protons with phosphorus atom. IR results showed that the ??(C=O) values of compounds 7?C10 are greater than those of compounds 1?C5 which means that isonicotinyl moiety is more electron withdrawing than nicotinyl group. X-ray outcomes revealed that in complex 11 three phosphoric triamide ligands have been connected to each Er(III); one from Npyridine and two from P=O donor sites. One of the P=O donor ligands is mono dentate while the other one acts as a bidentate ligand and coordinates to another Er atom via its Npyridine site. By forming complex 11 the P=O and C?CNamide bond lengths of ligand is increased in both, mono and bi dentate, ligands while the C=O bond length is decreased to lower values. These variations are in good agreement with IR results. All H-bonds and electrostatic interactions lead to form a three-dimensional polymeric cluster in the crystal lattice of 10 and 11.  相似文献   

18.
Various vinylsilanes, SiX(CHCH2)(CH3)[2-(CH3)2NCH2C6H4], and ethylsilanes, SiX(CH2CH3)(CH3)[2-(CH3)2NCH2C6H4] [X=Cl (1); OMe (2); H (3); F (4); OSiMe3 (5); NMe2 (6); Me (7)], were synthesized in order to investigate the electronic effect of vinyl group on silicon atom having an intramolecular coordination arm. The magnitude of Δδ (ethyl→vinyl for 29Si-NMR) of chlorosilane, 1, was the biggest one among 1-7. The differences of 29Si chemical shifts between vinylsilanes and ethylsilanes increased in the following order: X=Me, NMe2<H<OSiMe3<OMe<F<Cl.  相似文献   

19.
Four new complexes having general formula [CoL2(acr)2] (L: 1H-pyrazole (Hpz) (1); 3-methyl-1H-pyrazole (3-Me-Hpz) (2); 4-methyl-1H-pyrazole (4-Me-Hpz) (3); 3,5-dimethyl-1H-pyrazole (Hdmpz) (4); acr: acrylato ion) were synthesised and characterised. The infrared and UV–vis spectral data indicate that these pyrazole derivatives act as unidentate while acrylato ions act as bidentate chelate ligands generating Co(II) complexes with octahedral stereochemistry. TG experiments revealed the nature of complex species as anhydrous and confirmed those compositions. The biological assays revealed a good activity against Bacillus subtilis for all complexes.  相似文献   

20.
Reaction of [VO(OPr i )3] (1) with [O(CH2CH2OH)2] in 1:1 molar ratio in anhydrous benzene yield glycol-modified precursor, [VO{OCH2CH2OCH2CH2O}{OPr i }] (2). Further reactions of (2) with internally functionalized oximes in anhydrous benzene yield heteroleptic complexes of the type [VO{OCH2CH2OCH2CH2O}{ON=C(R)(Ar)}] (3–8) {where R=CH3, Ar=C4H3O-2 (3), C4H3S-2 (4), C5H4N-2 (5); and when R=H, Ar=C4H3O-2 (6), C4H3S-2 (7), C5H4N-2 (8)}. All these derivatives have been characterized by elemental analyses, molecular weight measurements and spectroscopic techniques. The crysoscopic molecular weight measurement as well as FAB mass study suggests dimeric nature of (2). However, FAB mass spectrum of (4), and the crysoscopic molecular weight measurements of (3), (4), (5) and (6) indicate the monomeric behavior of the oximato derivatives (3–8). Hexa-coordination around vanadium(V) has been proposed for both monomeric and dimeric derivatives. Sol–gel transformations of (1), (2) or (4) to vanadia [(a), (b) or (c), respectively] have been carried out at low sintering temperature (600 °C). The XRD patterns of (a), (b) or (c) indicate formation of a single orthorhombic phase in all the three cases. The SEM images suggest grain like [for (a) and (b)] and rod like [for (c)] morphology of the crystallites. IR, Raman spectra as well as EDX analyses indicate formation of pure vanadia. Absorption spectra of the vanadia (b) and (c) suggest energy band gaps of 2.53 and 2.65 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号