首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of polyethylene oxide (PEO) homologues in a wide range of molecular weight (from M(PEO)=200 to 10(6)) at the air/aqueous solution interface was investigated by dynamic and static surface tension measurements. An approximate estimate for the lower limit of PEO concentration was given at which reliable equilibrium surface tension can be determined from static surface tension measurements. It was shown that the observed jump in the earlier published sigma-lg(c(PEO)) curves is attributable to the nonequilibrium surface tension values at low PEO concentrations. The adsorption behavior of short chain PEO molecules (M(PEO)1000) is similar to that of the ordinary surfactants. The estimated standard free energy of PEO adsorption, DeltaG(0), increases linearly with the PEO molecular weight until M(PEO)=1000. In this molecular weight range, DeltaG(0) was found to be approximately the fifth of the hydrophobic driving force related to the adsorption of a surfactant with the same number of methylene groups. In the case of the longer chain PEOs the driving force of adsorption is so high that the adsorption isotherm is near saturation in the experimentally available polymer concentration range. Above a critical molecular weight the PEO adsorption reveals universal features, e.g., the surface tension and the surface density of segments do not depend on the polymer molecular weight.  相似文献   

2.
Surface tensions (gamma) of normal alkanes and methyl methacrylate (MMA) oligomers at various molecular weights in the low molecular weight range were computed using a newly proposed molecular dynamics (MD) simulation strategy which was developed based on the definition of gamma = ( partial differential U/ partial differential sigma)n,V,S. The MD simulations, even with the use of a generic force field, reproduced the experimentally observed molecular weight dependence of gamma (i.e., gamma proportional Mn(-2/3), where Mn is the number-average molecular weight) for both series of oligomers. Analysis of the data reveals that solvent accessible surface area, one of the key input variables used for the calculation of gamma, exhibits an Mn(2/3) (rather than Mn(1)) dependence. The reason for such dependence is that solvent accessible surface area formed by the chainlike small molecules depends, to a larger extent, on their orientations rather than their size. However, this is not the case for high molecular weight molecules as solvent accessible surface area of such surfaces are determined by the orientations of their segments which are determined by the conformations of the molecules. This may explain why surface tension of polymers experimentally exhibits an Mn(-1) dependence. It is inferred that the corresponding molecular weight dependence of the entropy changes associated with molecules in the low and high molecular weight ranges would be different.  相似文献   

3.
Abstract

The molecular weight distribution and its first moments of selected polymers were experimentally determined through GPC-investigations with additional molecular weight detection. In on-line operation discontinuously functioning Ubbelohde-viscometer was used for the determination of degree of polymerization in dependence on elution volume.

The relation between the experimentally determined values and relative kinetic parameters were derived for some polymers prepared by radical mechanism. The relative constants which determines the branching structure in polymer can be now calculated.

From the investigated polymers the effect of chemical nature of monomer units for the branching formation was determined.  相似文献   

4.
Several methods to measure surface tension involve some inconveniences when applied to moderate or highly viscous polymer solutions. Therefore, an improved version of the weight drop method (WDM) is proposed here. In addition, a comparative analysis of methods is carried out, including the drop profile (DPM), the selected planes (SPM), the WDM and the one proposed here (WDSM), finding that the WDSM is as easy to apply as the SPM and the WDM, although in practical conditions it is much more accurate than either of them. Moreover, the WDSM allows to reproduce the results that can be obtained using DPM, but, in general, it is much easier to implement and apply than such method. The WDSM was used to determine surface tension in polystyrene or poly(methyl methacrylate) in styrene solutions, where the dependence of such property with polymer average molecular weight and polymer concentration was experimentally evaluated.  相似文献   

5.
Crystallization kinetics for 12 polymers including polyolefins, polyesters, polyurethanes, polysiloxanes was measured by the evolution of heat in a modified Calvet-type calorimeter over wide temperature ranges. The results are analyzed in terms of the Avrami equation and a comparison between calorimetric and dilatometric results is carried out. It is concluded that, although in the majority of cases experimental results do not obey the Avrami equation, for some polymers the agreement is rather good. The Avrami parameter obtained, however, depends on the experimental technique. Possible reasons for this disagreement are discussed. Analysis of the calorimetric crystallization rate in the vicinity of the melting point by using the kinetic theory of crystallization shows that the growth is controlled by surface (two-dimentional) nucleation. Energy parameters for the crystallites were determined and it is shown that the surface energy of the crystallites depends on the molecular structure of the polymer. Temperature dependence of the calorimetric crystallization rate of the polymers for which crystallization rates could be determined above and below the maximum rate are analyzed using a kinetic equation with common approximations for the transport term. The influence of melting conditions on the crystallization rate was studied. The results indicate heterogeneous nucleation in the polymer melt. It is concluded that this may be due both to impurities and to high regularity of macromolecules in the polymer melt.  相似文献   

6.
The adsorption behavior ofN-dodecyl-N,N dimethyl aminobetaine chlorohydrate (DDAB·HCl) at the air/aqueous interface was studied for solutions in pure water and phosphate buffer (pH=7.4). The equilibrium surface tension versus concentration curves were used to estimate the equilibrium adsorption parameters and CMCs. The buffer solution has a lower CMC and shows higher surface activity below the CMC than the pure water solution. Data and calculations of the dynamic tension behavior at constant-area conditions showed that the adsorption processes of DDAB·HCl solutions are about 10 to 300 times slower than those predicted by a diffusion-controlled model. A mixed kinetics adsorption model with a modified Langmuir-Hinshelwood kinetic equation, which considers an activation energy barrier for adsorption, was applied to find the kinetic adsorption parameters. The dynamic tension behavior at pulsating-area conditions with large amplitude was also examined for frequencies up to 90 cycles/min. The tension amplitude responses depended strongly on the concentration and frequency. Comparisons of diffusion-controlled model predictions and pulsating area tension data confirmed the need to use a mixed kinetics model. The latter model can improve the fit over the diffusion-controlled model, but it does not quantitatively match the observed tensions.  相似文献   

7.
The rate of adsorption of fractionated polyethylenimine (PEI) from water onto regenerated cellulose fibers was studied as a function of the polymer diffusion coefficient. Differences in polymer molecular weight, salt concentration, and pH were employed to vary the diffusion coefficient which was measured independently by a free-diffusion technique. The sorption rate was measured at the same conditions and found to increase with decreasing molecular weight, increasing polymer concentration, decreasing salt concentration, and increasing pH. A simplified rate equation based on diffusion control with Langmuirian adsorption in stirred solution was developed by utilizing the concept of a Nernst diffusional film. The equation was successful in predicting the relationship between adsorption rate and diffusion coefficient for most cases studied. It was found, however, that a very large barrier to mass transfer retards the adsorption rate. For the system studied it was concluded that this barrier is a result of diffusion into and subsequent adsorption onto the internal porous structure of the cellulose.  相似文献   

8.
A dynamic adsorption model for surface-active materials at air/liquid interfaces with the consideration of aggregate dissolution effect was developed to investigate the dynamic surface tension behavior of aqueous surfactant dispersions. Two catanionic surfactants, cetylpyridinium dodecylsulfate (CP-DS) and dodecyltrimethylammonium dodecylsulfate (DTMA-DS), with low critical aggregation concentrations were chosen as model systems. Dynamic surface tensions of aqueous CP-DS and DTMA-DS systems were measured by a drop volume tensiometer. A model with diffusion-controlled or mixed-kinetic dynamic adsorption mechanisms considering the dissolution effect of dispersed aggregates was developed to simulate the dynamic surface tension data. An analysis by comparing the model predictions with experimental data demonstrated that the dynamic surface tension behavior of aqueous CP-DS and DTMA-DS dispersions could be described with a diffusion-controlled dynamic adsorption model taking the aggregate dissolution effect into account.  相似文献   

9.
The effect of polydispersity on surface segregation of a lower molecular weight polymer component in a higher molecular weight linear polymer melt host is investigated theoretically. We show that the integrated surface excess zM of a polymer component of molecular weight M satisfies a simple relation zM=2Ue(M/Mw-1)phiM, where Mw is the weight averaged molecular weight, phiM is the polymer volume fraction, and Ue is the attraction of polymer chain ends to the surface. Ue is principally of entropic origin, but also reflects any energetic preference of chain ends to the surface. We further show that the surface tension gammaM of a polydisperse melt of high molar mass components depends on the number average degree of polymerization Mn as, gammaM=gammainfinity+2UerhobRT/Mn. The parameter gammainfinity is the asymptotic surface tension of an infinitely long polymer of the same chemistry, rhob is the bulk density of the polymer, R is the universal gas constant, and T is the temperature. The predicted gammaM compare favorably with surface tension values obtained from self-consistent field theory simulations that include equation of state effects, which account for changes in polymer density with molecular weight. We also compare the predicted surface tension with available experimental data.  相似文献   

10.
The interfacial behavior of aqueous solutions of four different neutral polymers in the presence of sodium dodecyl sulfate (SDS) has been investigated by surface tension measurements and ellipsometry. The polymers comprised linear poly(ethylene oxide) with low and high molecular masses (10(3) and 10(6) Dalton (Da), respectively), and two high molecular mass methacrylate-based comb polymers containing poly(ethylene oxide) side chains. The adsorption isotherms of SDS, determined by Gibbs analysis of surface tension data, are nearly the same in the presence of the high molecular mass linear polymer and the comb polymers. Analysis of the ellipsometric data reveals that while a single surface layer model is appropriate for films of polymer alone, a more sophisticated interfacial layer model is necessary for films of SDS alone. For the polymer/surfactant mixtures, a novel semiempirical approach is proposed to determine the surface excess of polymer, and hence quantify the interfacial composition, through analysis of data from the two techniques. The replacement of the polymer due to surfactant adsorption is much less pronounced for the high molecular mass linear polymer and for the comb polymers than for the low molecular mass linear polymer. This finding is rationalized by the significantly higher adsorption driving force of the larger polymer molecules as well as by their more amphiphilic structure in the case of the comb polymers.  相似文献   

11.
A dynamic surface tension detector (DSTD) was used to examine the molecular diffusion and surface adsorption characteristics of surface-active analytes as a function of solution viscosity. Dynamic surface tension is determined by measuring the differential pressure across the air/liquid interface of repeatedly growing and detaching drops. Continuous surface tension measurement throughout the entire drop growth is achieved for each eluting drop (at a rate of 30 drops/min for 2 μl drops), providing insight into the kinetic behavior of molecular diffusion and orientation processes at the air/liquid interface. Three-dimensional data are obtained through a calibration procedure previously developed, but extended herein for viscous solutions, with surface tension first converted to surface pressure, which is plotted as a function of elution time axis versus drop time axis. Thus, an analyte that lowers the surface tension results in an increase in surface pressure. The calibration procedure derived for the pressure-based DSTD was successfully extended and implemented in this report to experimentally determine standard surface pressures in solutions of varied viscosity. Analysis of analytes in viscous solution was performed at low analyte concentration, where the observed analyte surface activity indicates that the surface concentration is at or near equilibrium when in a water mobile phase (viscosity of 1.0 Cp). Two surface-active analytes, sodium dodecyl sulfate (SDS) and polyethylene glycol (MW 1470 g/mol, PEG 1470), were analyzed in solutions ranging from 0 to 60% (v/v) glycerol in water, corresponding to a viscosity range of 1.0-15.0 Cp. Finally, the diffusion-limited surface activity of SDS and PEG 1470 were observed in viscous solution, whereby an increase in viscosity resulted in a decreased surface pressure early in drop growth. The dynamic surface pressure results reported for SDS and PEG 1470 are found to correlate with solution viscosity and analyte diffusion coefficient via the Stokes-Einstein equation.  相似文献   

12.
An in situ ATR-FTIR study of polyacrylamide adsorption at the talc surface   总被引:1,自引:0,他引:1  
The adsorption of a low molecular weight unmodified polyacrylamide (Polymer-N) and a hydroxyl-substituted polyacrylamide (Polymer-H) onto talc was studied using in situ particle film ATR-FTIR spectroscopy in the multiple internal reflection mode. Spectra of the adsorbed polymer were collected as a function of increasing concentration and as a function of time. Measurement of the peak intensities of the adsorbed polymer allowed adsorption isotherms and adsorption kinetics to be determined for both polymers. Langmuir adsorption isotherm analysis of in situ data yielded Gibbs free energies of adsorption (deltaG0(ads)) for Polymer-N and Polymer-H of -44.5 and -45.7 kJ/mol, respectively, which correlate well with similar values determined from ex situ adsorption isotherms. Kinetic analysis indicated that the adsorption of both polymers was a pseudo-first-order process. The apparent rate constants for Polymer-N and Polymer-H were 0.10 and 0.15 min(-1), respectively. Absence of spectral shifts in the spectra of adsorbed polymer is indicative of a hydrophobic interaction between the polyacrylamides and the talc surface.  相似文献   

13.
Dynamic surface tension and its diffusional decay have been studied with four different polydisperse C12E7 at different temperatures and different concentrations. The CMC and the headgroup area from equilibrium surface tension were shown with polydispersity and temperature. The chain length of oxyethylene on the surface was derived from comparison between the headgroup area of monodisperse dodecyl ethoxylates and that of polydisperse C12E7. The values for (Deff/D) were deduced with a diffusion-controlled adsorption model using parameters obtained from equilibrium surface tension. It was shown at short adsorption time that molecules were really adsorbed onto the surface in a diffusion-controlled manner. At a comparably long adsorption time, the ratios (Deff/D) were calculated by assuming the selective adsorption onto the surface. The modified Arrhenius-type equation was proposed by putting a concentration term in front of the exponential terms. The modified Arrhenius-type equation gave Ea=30 kJ/mole for this system. Ea directly derived without an Arrhenius plot was between 9 to 11 kJ/mole. It was an indication that the activation energy alone was not enough to explain the decay of dynamic surface tensions.  相似文献   

14.
Young TE  Synovec RE 《Talanta》1996,43(6):889-899
Chemical analysis of surface active species (surfactants) is of interest for many applications, such as in process monitoring, biomedical applications, environmental monitoring and surface science investigations. Recently, we reported a dynamic surface tension detector (DSTD) based upon optically probing the size of a repeating drop resulting from constant flow of an aqueous solvent out of the end of a capillary. Presence of a surfactant in a growing drop reduces the surface tension at the air-solvent interface, causing the drop to detach at a smaller volume, which is detected. The DSTD has a kinetic dependence, and with increasing flow rate the sensitivity decreases due to diffusional and adsorption effects. We report that for the sodium salt of dodecylsulfate (DS), the DSTD performs significantly better with a stainless steel (S.S.) capillary dropper than with a fused silica dropper because the S.S. dropper exhibits a smaller adsorption effect as a function of time. Flow-injection analysis with the DSTD of DS was found to enhance sensitivity 50-fold by in-situ reaction with the ion-pair reagent tetrabutylammonium hydroxide (TBA) in water, even though the TBA alone was not very surface active. The TBA-DS system serves as a model for a selective detection method in which surface activity is exploited and enhanced. The detection limit for DS, as TBA-DS, was 400 ppb. Additionally, weakly surface active species such as TBA could be analyzed "indirectly" by ion-pair formation with DS. The enhanced sensitivity is due to increased packing of the ion-pairs at the air-aqueous solvent interface. The flow rate dependence on the sensitivity of detecting the TBA-DS ion-pair was examined. Two limiting conditions were observed as a function of ion-pair concentration: sensitivity decreases linearly with inverse flow rate at high flow rates and approaches a steady state at slower flow rates.  相似文献   

15.
A refined differential maximum bubble pressure tensiometer was used for measuring the dynamic surface tension at various concentrations of a nonconventional surfactant, a member of a new homologous series of phenylalanine glycerol-ether amphiphiles, with 10 carbon atoms to the hydrophobic alkyl chain (C(10)-PhGE). The effective bubble formation frequency for the examined surfactant concentrations was varied from 2 bubbles per second to 1 bubble per 20 s. The variation of equilibrium surface tension with concentration as well as the critical micelle concentration were determined by a Wilhelmy plate technique. Comparisons between dynamic and equilibrium surface tension values demonstrate that, under the employed surface deformation rates, the equilibrium surface tension is a misleading indicator of surface activity. This is also supported by simple surface rheology considerations. Results based on a diffusion-controlled kinetic analysis provide further evidence on the strong dependence of surface activity on the particular time scale of deformation.  相似文献   

16.
The adsorption/desorption kinetics for individual polymers and polymer mixtures of the water-soluble associative polymers with molecular weights of 12, 62, and 100 kg/mol onto SiO2 planar substrate have been studied by ellipsometry at room temperature under nonflow conditions. Equations were derived to predict behaviors of the adsorption/desorption kinetics and dynamic surface tension onto planar surfaces for any times. It is shown that the desorption kinetics of the water-soluble associative polymers onto planar SiO2 surface is an irreversible process due to strong interaction between polymer molecules and an interface. Copyright 1999 Academic Press.  相似文献   

17.
The behaviour of flexible hydrosoluble polymers of high molecular weight: polyacrylamide and two polyacids, poly(α, L-glutamic acid) and a copolymer of maleic acid was investigated in the context of their dynamic behaviour at solid/liquid interfaces. The adsorption rate is related to the structure of the surface in terms of remaining interacting surface sites. The desorption rate was measured by carrying out adsorption with radioactive labelled polymers, followed by exchange with unlabelled polymers. The slow exchange rate observed suggests a metastable equilibrium state owing to strong multisegment adsorption in the potential well of the surface. However, the “diffuse” polymer layer formed by loops which extend in the aqueous phase within distances of several hundred Angstroms “responds” reversibly to a change in the solvent composition. The latter effect was found by recording the hydrodynamic permeability of pores covered by the adsorbed polymer; the permeability to fluid flow is very sensitive to the loop layer thickness.  相似文献   

18.
The surface tension of polymers in a supercritical fluid is one of the most important physicochemical parameters in many engineering processes, such as microcellular foaming where the surface tension between a polymer melt and a fluid is a principal factor in determining cell nucleation and growth. This paper presents experimental results of the surface tension of polystyrene in supercritical carbon dioxide, together with theoretical calculations for a corresponding system. The surface tension is determined by Axisymmetric Drop Shape Analysis-Profile (ADSA-P), where a high pressure and temperature cell is designed and constructed to facilitate the formation of a pendent drop of polystyrene melt. Self-consistent field theory (SCFT) calculations are applied to simulate the surface tension of a corresponding system, and good qualitative agreement with experiment is obtained. The physical mechanisms for three main experimental trends are explained by using SCFT, and none of the explanations quantitatively depend on the configurational entropy of the polymer constituents. These calculations therefore rationalize the use of simple liquid models for the quantitative prediction of surface tensions of polymers. As pressure and temperature increase, the surface tension of polystyrene decreases. A linear relationship is found between surface tension and temperature, and between surface tension and pressure; the slope of surface tension change with temperature is dependent on pressure.  相似文献   

19.
In many cases, polymer adsorption is studied by measuring adsorption isotherms. Quite often it is found that the results are at variance with theoretical predictions. However, usually these adsorption isotherms are interpreted in terms of a single polymeric solute. Most polymers used in experimental studies are polydisperse and should be treated as mixtures. It is well established that the larger molecules in such mixtures adsorb preferentially over the smaller ones. In this paper we show that many discrepancies between polymer adsorption theory and experiment (e.g., the rounded shape of isotherms, the dependence of the adsorbance on adsorbent concentration, and the lack of desorption upon dilution) can be attributed to polydispersity. A quantitative analysis enables us to calculate isotherms for a polymer of arbitrary molecular weight distribution, provided the dependency of the plateau adsorbance on molecular weight is known. Experiments supporting the theory are reported. The fact that polymers do not desorb upon dilution with solvent is often regarded as a proof that polymer adsorption is irreversible. We show that, if a polydisperse sample is in equilibrium with an adsorbing surface, no detectable desorption may take place upon dilution. Therefore, the adsorption of polymers might well be reversible, even if desorption experiments would indicate apparent irreversibility.  相似文献   

20.
Monothiol-terminated hyperbranched polyglycerols (HPGs) were synthesized by ring-opening polymerization of glycidol from partially deprotonated 2,2'-dihydroxyethane disulfide as the initiator and subsequent reduction of the disulfide group. Two molecular weights of HPG thiols were synthesized. The molecular weights of the polymers were determined by MALDI-TOF analysis, and the presence of thiol was verified by Ellman's assay. The self-assembly of HPG thiols on gold was studied and compared with that of linear poly(ethylene glycol) (PEG) thiols utilizing various surface analysis techniques. Monothiol-functionalized HPGs readily adsorbed to a gold surface and formed highly uniform thin films on the surface. The graft density of the HPG layer decreased with an increase in the molecular weight of the polymer. The amount of polymer on the surface increased with increasing incubation concentration and saturated above 6 g/L polymer concentration. Generally, HPG thiols gave lower graft density compared to linear PEG thiols of similar molecular weight. AFM morphological studies showed that HPG thiols form more uniform and smooth surface films compared to PEG thiols. Incubation of a polymer-coated surface (HPG thiols and PEG thiols) with bovine serum albumin and immunoglobulin showed that the high molecular weight hyperbranched polyglycerol was more resistant to protein adsorption than linear PEG of similar molecular weight or lower molecular weight HPG. The protein adsorption decreased with increasing graft density of the HPG chains on the surface. Our results show that HPG could be a good alternative to PEG in the development of nonfouling functional surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号