首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mononuclear Ni(II), Co(II), and Zn(II) complexes of the bppppa (N,N-bis[(6-phenyl-2-pyridyl)methyl]-N-[(6-pivaloylamido-2-pyridyl)methyl]amine) ligand have been synthesized and characterized by X-ray crystallography, 1H NMR, UV-vis (Ni(II) and Co(II)) and infrared spectroscopy, and elemental analysis. Each complex has the empirical formula [(bppppa)M](ClO4)2 (M = Ni(II), 2; Zn(II), 3; Co(II), 4) and in the solid state exhibits a metal center having a coordination number of five; albeit, the cation of 2 also has a sixth weak interaction involving a perchlorate anion. Treatment of [(bppppa)Ni](ClO4)2 (2) with 1 equiv of acetohydroxamic acid results in the formation of [(bppppa)Ni(HONHC(O)CH3)](ClO4)2 (1), a novel Ni(II) complex having a coordinated neutral acetohydroxamic acid ligand. In 1, one phenyl-appended pyridyl donor of the bppppa chelate ligand is dissociated from the metal center and acts as a hydrogen bond acceptor for the hydroxyl group of the bound acetohydroxamic acid ligand. Treatment of 1 with excess water results in the formation of 2 and free acetohydroxamic acid. We hypothesize that this reaction occurs due to disruption of the intramolecular hydrogen bonding interaction involving the bound acid. In this series of reactions, the bppppa ligand exhibits behavior reminiscent of a type III hemilabile ligand in terms of one phenylpyridyl donor. Treatment of 3 or 4 with acetohydroxamic acid results in no reaction, indicating that the bppppa-ligated Ni(II) derivative 2 exhibits unique coordination chemistry with respect to reaction with acetohydroxamic acid within this series of complexes. We attribute this reactivity to the ability of the bppppa-ligated Ni(II) center to adopt a pseudo-octahedral geometry, whereas the Zn(II) and Co(II) complexes retain five coordinate metal centers.  相似文献   

2.
The structure and reactivity of a complex of zinc(II), water, acetic acid, and acetohydroxamic acid, in which one of the acids is deprotonated, is investigated by means of mass spectrometry, labeling studies, and density functional calculations to unravel the exceptional binding properties of hydroxamic acids towards zinc‐containing enzymes at the molecular level. It is shown that acetohydroxamic acid is deprotonated in the complex, whereas acetic acid is present in its neutral form. The binding energies of the ligands towards zinc increase in the following order: water<acetic acid<acetohydroxamic acid. The structure of the complex and its fragmentation provide experimental evidence for the proposed mode of operation of drugs based on hydroxamic acids. Furthermore, coordinatively unsaturated complexes of zinc and acetohydroxamic acid undergo a zinc‐assisted Lossen rearrangement followed by elimination of water if acetohydroxamic acid is present as a neutral ligand, or by loss of methylisocyanate if acetohydroxamic acid is deprotonated.  相似文献   

3.
Five new Cu(II), Zn(II), and Ni(II) 3-(4-nitrophenyl)acrylic acid complexes were synthesized and evaluated for inhibitory activity on jack bean urease. All five complexes were structurally determined by single crystal X-ray analysis. Compared with the positive reference acetohydroxamic acid (IC50?=?13.25?μM), Cu(II) complexes 3 and 4 showed the strongest inhibitory activity against jack bean urease (IC50?=?1.23 and 1.17?μM). Ni(II) and Zn(II) complexes also exhibited inhibitory activities (IC50?=?10.09–13.10?μM).  相似文献   

4.
A Ni(II) Schiff-base complex, Ni(C14H10NOBr2)2, was synthesized and structurally characterized by single-crystal X-ray analysis. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 µmol L?1), which is a positive reference. A docking analysis using the autodock 4.0 program could explain the inhibitory activity of the complex against urease.  相似文献   

5.
The crystal structure of the title compound, [Ni(C8H20N4)(C12H8N2)](ClO4)2, has been determined by X-ray diffraction. The Ni(II) ion is six coordinated with four nitrogen atoms of the tetradentate macrocyclic ligand and two nitrogen atoms of the bidentate ligand in a distorted octahedron geometry. The folded tetradentate macrocyclic ligand adopts a configuration having four five-membered chelate rings in distorted eclipsed conformations. The four hydrogen atoms of the amine groups of the macrocyclic ligand are on the same side towards the bidentate ligand.  相似文献   

6.
Kinetic studies of stripping of Np(IV) from 30% Tri-Butyl-Phosphate/Odourless Kerosene (TBP/OK) into a nitric acid solution containing acetohydroxamic acid (CH3CONHOH) have been investigated using a Lewis cell. The different parameters affecting the back-extraction rate of Np(IV) such as Np, TBP, nitric acid, nitrate, acetohydroxamic acid(AHA) concentration in addition to temperature, stirring speed and special interfacial area were separately studied and a rate equation was deduced. Results have been compared among themselves and other published works on similar systems. Mechanisms of stripping processes have been proposed.  相似文献   

7.
A mononuclear Ni(II) complex ([(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1)), supported by the 6-Ph2TPA chelate ligand (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) and containing a cis-beta-keto-enolate ligand having a C2 hydroxyl substituent, undergoes reaction with O2 to produce a Ni(II) monobenzoate complex ([(6-Ph2TPA)Ni(O2CPh)]ClO4 (3)), CO, benzil (PhC(O)C(O)Ph), benzoic acid, and other minor unidentified phenyl-containing products. Complex 3 has been identified through independent synthesis and was characterized by X-ray crystallography, 1H NMR, FAB-MS, FTIR, and elemental analysis. A series of cis-beta-keto-enolate Ni(II) complexes supported by the 6-Ph2TPA ligand ([(6-Ph2TPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4), [(6-Ph2TPA)Ni(CH3C(O)CHC(O)CH3)]ClO4 (5), and [(6-Ph2TPA)Ni(PhC(O)CHC(O)C(O)Ph) (6)) have been prepared and characterized. While these complexes exhibit structural and/or spectroscopic similarity to 1, all are unreactive with O2. The results of this study are discussed in terms of relevance to Ni(II)-containing acireductone dioxygenase enzymes, as well as in the context of recently reported cofactor-free, quercetin, and beta-diketone dioxygenases.  相似文献   

8.
Complexes of the type [M(L)X(2)], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.  相似文献   

9.
2,6-diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X2 and [Ni(L)X]X compositions (where L=ligand and X=NO3-, Cl- and CH3COO-) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.  相似文献   

10.
In an effort to identify promising non-hydroxamate inhibitors of matrix metalloproteinases (MMPs) several new zinc-binding groups (ZBGs) based on pyridine-derived or aza-macrocycle chelators have been examined. Fluorescence-based enzyme assays have been used to determine the IC50 values for these ZBGs against MMP-1, MMP-3, and anthrax lethal factor (LF). Many of these ligands were found to be remarkably potent, with IC50 values as much as 185-fold lower than that found for acetohydroxamic acid. These ligands are proposed to be more selective "warheads" for the inhibition of metalloenzymes that contain Zn2+ versus other metal ions at their active site.  相似文献   

11.
Ni acetate reacts with naphthaldimines containing the N2O2 donor group to yield two types of complex. The first, of molecular formula NiL (L=naphthaldimine), is free of the anions in which the ligand behaves as a dibasic tetradentate towards one Ni ion. These complexes are all diamagnetic, having square planar geometry. In the second type, the ligand behaves either as a monobasic acid towards the Ni ion or as a neutral molecule. These complexes are paramagnetic and exhibit a tetrahedral configuration around the central metal ion. The metal chelates were characterized by elemental analyses (t.g.a. and d.t.a.), and by i.r. and u.v.–vis. spectroscopy. Magnetic moments were also measured. A series of NiII–Schiff base complexes were tested for their catalytic activity in the hydrogenation of cyclohexene with molecular H2. The effects of the bridge length, amounts of solvent and cosolvent were studied. The use of H2O as a cosolvent greatly increases the yield of the reaction product. The hydrogenation product yield is linearly related to the dielectric constant of the medium.  相似文献   

12.
Nickel superoxide dismutase (NiSOD) is a recently discovered metalloenzyme that catalyzes the disproportionation of O2(*-) into O2 and H2O2. In its reduced state, the mononuclear Ni(II) ion is ligated by two cis-cysteinate sulfurs, an amine nitrogen (from the protein N-terminus), and an amide nitrogen (from the peptide backbone). Unlike many small molecule and metallopeptide-based NiN2S2 complexes, S-based oxygenation is not observed in NiSOD. Herein we explore the spectroscopic properties of a series of three Ni(II)N2S2 complexes (bisamine-ligated (bmmp-dmed)Ni(II), amine/amide-ligated (Ni(II)(BEAAM))(-), and bisamide-ligated (Ni(II)(emi))(2-)) with varying amine/amide ligation to determine the origin of the dioxygen stability of NiSOD. Ni L-edge X-ray absorption spectroscopy (XAS) demonstrates that there is a progression in ligand-field strength with (bmmp-dmed)Ni(II) having the weakest ligand field and (Ni(II)(emi))(2-)) having the strongest ligand field. Furthermore, these Ni L-edge XAS studies also show that all three complexes are highly covalent with (Ni(II)(BEEAM))(-) having the highest degree of metal-ligand covalency of the three compounds studied. S K-edge XAS also shows a high degree of Ni-S covalency in all three complexes. The electronic structures of the three complexes were probed using both hybrid-DFT and multiconfigurational SORCI calculations. These calculations demonstrate that the nucleophilic Ni(3d)/S(pi)* HOMO of these NiN2S2 complexes progressively decreases in energy as the amide-nitrogens are replaced with amine nitrogens. This decrease in energy of the HOMO deactivates the Ni-center toward O2 reactivity. Thus, the Ni-S bond is protected from S-based oxygenation explaining the enhanced stability of the NiSOD active-site toward oxygenation by dioxygen.  相似文献   

13.
Efficient one-step method for the synthesis of amides directly from ketones and benzoxazoles from (2-hydroxyaryl) ketones by the reaction of acetohydroxamic acid using sulfuric acid as catalyst was described.  相似文献   

14.
The diamagnetic nickel mononitrosyl complexes (TmR)Ni(NO) (R = But, p-Tol) and (BmR)Ni(PPh3)(NO) (R = Me, But) have been readily prepared from Ni(PPh3)2(NO)Br and the appropriate Na(TmR) or Na(BmR) reagents, respectively. These species constitute the first nickel nitrosyl complexes supported by these ligand systems. An X-ray diffraction study of (Tmp-Tol)Ni(NO) confirmed its pseudo-tetrahedral geometry and the presence of a nearly linear nitrosyl ligand. In contrast, (BmMe)Ni(PPh3)(NO) can be best described as having a trigonal pyramidal geometry, a spatial arrangement unprecedented in nickel nitrosyl chemistry, which is facilitated by the disposition of the BmMe ligand and the presence of a weak intramolecular Ni?H–B interaction opposite to the apical triphenylphosphine ligand.  相似文献   

15.
A series of Ni(II) carboxylate complexes, supported by a chelate ligand having either secondary hydrophobic phenyl groups (6-Ph2TPA, N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) or hydrogen bond donors (bnpapa, N,N-bis((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), have been prepared and characterized. X-ray crystallographic studies of [(6-Ph2TPA)Ni(O2C(CH2)2SCH3)]ClO4.CH2Cl2 (4.CH2Cl2) and [(6-Ph2TPA)Ni(O2CCH2SCH3)]ClO(4).1.5CH2Cl2 (5.1.5CH2Cl2) revealed that each complex contains a distorted octahedral Ni(II) center and a bidentate carboxylate ligand. A previously described benzoate complex ([(6-Ph2TPA)Ni(O2CPh)]ClO4 (3)) has similar structural characteristics. Recrystallization of dry powdered samples of 3, 4.0.5CH2Cl2, and 5 from wet organic solvents yielded a second series of crystalline Ni(II) carboxylate complexes having a coordinated monodentate carboxylate ligand ([(6-Ph2TPA)Ni(H2O)(O2CPh)]ClO4 (6), [(6-Ph2TPA)Ni(H2O)(O2C(CH2)2SCH3)]ClO4.0.2CH2Cl2 (7.0.2CH2Cl2), [(6-Ph2TPA)Ni(H2O)(O2CCH2SCH3)]ClO4 (8)) which is stabilized by a hydrogen-bonding interaction with a Ni(II)-bound water molecule. In the cationic portions of 7.0.2CH2Cl2 and 8, weak CH/pi interactions are also present between the methylene units of the carboxylate ligands and the phenyl appendages of the 6-Ph2TPA ligands. A formate complex of the formulation [(6-Ph2TPA)Ni(H2O)(O2CH)]ClO4 (9) was isolated and characterized. The mononuclear Ni(II) carboxylate complexes [(bnpapa)Ni(O2CPh)]ClO4 (10), [(bnpapa)Ni(O2C(CH2)2SCH3)]ClO4 (11), [(bnpapa)Ni(O2CCH2SCH3)]ClO4 (12), and [(bnpapa)Ni(O2CH)]ClO4 (13) were isolated and characterized. Two crystalline solvate forms of 10 (10.CH3CN and 10.CH2Cl2) were examined by X-ray crystallography. In both, the distorted octahedral Ni(II) center is ligated by a bidentate benzoate ligand, one Ni(II)-bound oxygen atom of which accepts two hydrogen bonds from the supporting bnpapa chelate ligand. Spectroscopic studies of 10(-13) suggest that all contain a bidentate carboxylate ligand, even after exposure to water. The combined results of this work enable the formulation of a proposed pathway for carboxylate product release from the active site Ni(II) center in acireductone dioxygenase.  相似文献   

16.
Three kinds of aliphatic hydroxamic acids, i.e., acetohydroxamic acid, n-butyrohydrozamic acid, and sorbohydroxamic acid have been prepared as free acids and potassium salts. Their acid dissociation constants and the formation constants of complexes formed by some bivalent metal ions of the first transition element (Mn, Co, Ni, Cu, Zn) with these three chelating agents in aqueous solution have been determined by using potentiometric titration technique at ionic strength of 0.1M by sodium perchlorate and at a temperature of 25°C±0.1°. The stability of the transition metal ion complexes with these aliphatic hydroxamic acids is in the order Mn<Co<Ni<Cu>Zn, which is in agreement with the Irving and William's rule. The chelating forming properties and the comparison of quality as analytical reagent of these three hydroxamic acids were discussed in terms of the proton displacement constant. Sorbohydroxamic acid is superior in its reactivity and the other respects among the three reagents.  相似文献   

17.
Braich N  Codd R 《The Analyst》2008,133(7):877-880
Nickel(II)-based immobilized metal affinity chromatography (IMAC) has been used to capture from standard samples the hydroxamate-containing siderophores, acetohydroxamic acid (ahaH), suberodihydroxamic acid (shaH(2)) or desferrioxamine B (DFOB) in recoveries ranging between 35-90%. The capacity of a 1 mL Ni(II)-charged IMAC column towards DFOB capture at the pH optima of 8.9 is approximately 3000 nmol. This method has been used for the direct capture of DFOB (approximately 65% recovery) from the untreated supernatant of iron-deprived cultures of Streptomyces pilosus, the soil bacterium from which DFOB was first discovered. In addition to selecting for DFOB and a related siderophore, two other Fe(III)-responsive species have been identified from RP-HPLC analysis of the IMAC-processed eluant from the S. pilosus supernatant. Since the characterisation of siderophores from natural systems is hampered by the low yields obtained from traditional purification methods, this IMAC-based affinity method offers significant potential for improving yields of this key class of bioligands and other small molecule metabolites with affinities to IMAC-compatible metal ions.  相似文献   

18.
Synthesis of thiazolidinone based on quinolone moiety was established starting from 4-hydroxyquinol-2-ones. The strategy started with the reaction of ethyl bromoacetate with 4-hydroxyquinoline to give the corresponding ethyl oxoquinolinyl acetates, which reacted with hydrazine hydrate to afford the hydrazide derivatives. Subsequently, hydrazides reacted with isothiocyanate derivatives to give the corresponding N,N-disubstituted thioureas. Finally, on subjecting the N,N-disubstituted thioureas with dialkyl acetylenedicarboxylates, cyclization occurred, and thiazolidinone derivatives were obtained in good yields. The two series based on quinolone moiety, one containing N,N-disubstituted thioureas and the other containing thiazolidinone functionalities, were screened for their in vitro urease inhibition properties using thiourea and acetohydroxamic acid as standard inhibitors. The inhibition values of the synthesized thioureas and thiazolidinones exhibited moderate to good inhibitory effects. The structure−activity relationship revealed that N-methyl quinolonyl moiety exhibited a superior effect, since it was proved to be the most potent inhibitor in the present series achieving (IC50 = 1.83 ± 0.79 µM). The previous compound exhibited relatively much greater activity, being approximately 12-fold more potent than thiourea and acetohydroxamic acid as references. Molecular docking analysis showed a good protein−ligand interaction profile against the urease target (PDBID: 4UBP), emphasizing the electronic and geometric effect of N,N-disubstituted thiourea.  相似文献   

19.
Aizawa S  Kodama S 《Electrophoresis》2012,33(3):523-527
The mechanism of change in the enantiomer migration order (EMO) of tartarate on ligand exchange CE with Cu(II)- and Ni(II)-D-quinic acid systems was investigated thoroughly by circular dichroism (CD) spectropolarimetry. The (13) C NMR spectra of solutions containing D-quinate (pH 5.0) with Cu(II) or Ni(II) revealed the coordination of carboxylate and hydroxyl groups on D-quinate. The D-quinic acid concentration dependence of the CD spectra at a fixed Cu(II) concentration at pH 5.0 indicates that the 1:1, 1:2 and 1:3 Cu(II)-D-quinate complexes were formed with an increase in the concentration of D-quinic acid. The CD spectral behavior revealed that D-tartarate is selectively coordinated to the 1:1 complex to give the 1:1:1 Cu(II)-D-quinate-D-tartarate ternary complex while L-tartarate is selectively bound to the 1:2 and 1:3 complexes to form the 1:2:1 ternary complex. In the Ni(II)-D-quinic acid system, it became apparent that the 1:2 Ni(II)-D-quinate complex is mainly formed in the wide range of D-quinic acid concentration at pH 5.0 and D-tartarate is selectively coordinated to the 1:2 complex to form the 1:2:1 ternary complex. The change in EMO of tartarate on ligand exchange CE was explainable by the change in coordination selectivity for D- and L-tartarates in the Cu(II)- and Ni(II)-D-quinic acid systems depending on the compositions of the complexes formed in BGE.  相似文献   

20.
By solving high-resolution crystal structures of a large number (14 in this case) of adducts of matrix metalloproteinase 12 (MMP12) with strong, nanomolar, inhibitors all derived from a single ligand scaffold, it is shown that the energetics of the ligand-protein interactions can be accounted for directly from the structures to a level of detail that allows us to rationalize for the differential binding affinity between pairs of closely related ligands. In each case, variations in binding affinities can be traced back to slight improvements or worsening of specific interactions with the protein of one or more ligand atoms. Isothermal calorimetry measurements show that the binding of this class of MMP inhibitors is largely enthalpy driven, but a favorable entropic contribution is always present. The binding enthalpy of acetohydroxamic acid (AHA), the prototype zinc-binding group in MMP drug discovery, has been also accurately measured. In principle, this research permits the planning of either improved inhibitors, or inhibitors with improved selectivity for one or another MMP. The present analysis is applicable to any drug target for which structural information on adducts with a series of homologous ligands can be obtained, while structural information obtained from in silico docking is probably not accurate enough for this type of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号