首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The charged current lepton production induced by neutrinos in 56Fe nuclei has been studied. The calculations have been done for the quasielastic as well as the inelastic reactions assuming Δ-dominance and take into account the effect of Pauli blocking, Fermi motion and the renormalization of weak transition strengths in the nuclear medium. The quasielastic production cross-sections for lepton production are found to be strongly reduced due to nuclear effects, while there is about 10% reduction in the inelastic cross-sections in the absence of the final-state interactions of the pions. The numerical results for the momentum and angular distributions of the leptons averaged over the various atmospheric-neutrino spectra at the Soudan and Gran Sasso sites have been presented. The effect of nuclear-model dependence and the atmospheric-flux dependence on the relative yield of μ to e has been studied and discussed.  相似文献   

2.
We obtain total and differential cross-sections for the strangeness changing charged current reactions ˉ + p → Λ + L + and ˉ + p → Σ0 + L + , where L is a charged lepton, either an electron, muon or tau. We do this by making use of the standard dipole form factors normally used and of the new form factors recently obtained from recoil proton measurements in electron-proton electromagnetic scattering. We also obtain the contributions of the individual form factors to the total and differential cross-sections for both sets of form factors. We find that the differential and total cross-sections for Λ production change only slightly between the two sets of form factors but that the differential and total cross-sections change substantially for Σ0 production. We discuss the possibility of distinguishing between the two cases for the experiments planned by the MINERν A Collaboration.  相似文献   

3.
A semi-microscopic self-consistent quantum approach developed recently to describe the inner-crust structure of neutron stars within the Wigner-Seitz (WS) method with the explicit inclusion of neutron and proton pairing correlations is further developed. In this approach, the generalized energy functional is used which contains the anomalous term describing the pairing. It is constructed by matching the realistic phenomenological functional by Fayans et al. for describing the nuclear-type cluster in the center of the WS cell with the one calculated microscopically for neutron matter. Previously, the anomalous part of the latter was calculated within the BCS approximation. In this work corrections to the BCS theory which are known from the many-body theory of pairing in neutron matter are included into the energy functional in an approximate way. These modifications have a sizable influence on the equilibrium configuration of the inner crust, i.e. on the proton charge Z and the radius R c of the WS cell. The effects are quite significant in the region where the neutron pairing gap is larger.  相似文献   

4.
The neutron radius of a heavy nucleus is a fundamental nuclear-structure observable that remains elusive. Progress in this arena has been limited by the exclusive use of hadronic probes that are hindered by large and controversial uncertainties in the reaction mechanism. The parity radius experiment at the Jefferson Laboratory offers an attractive electro-weak alternative to the hadronic program and promises to measure the neutron radius of 208Pb accurately and model independently via parity-violating electron scattering. In this contribution we examine the far-reaching implications that such a determination will have in areas as diverse as nuclear structure, atomic parity violation, and astrophysics.  相似文献   

5.
Available Skyrme parametrizations with hyperons are examined from the point of view of their suitability for applications to neutron stars. It is shown that the hyperons can attenuate or even remove the problem of ferromagnetic instability common to (nearly) all Skyrme parametrizations of the nucleon-nucleon interaction. At high density the results are very sensitive to the choice of the interaction. The selected parameter sets are then used to obtain the resulting properties of both cold neutron stars and hot protoneutron stars. The general features known from other models are recovered.  相似文献   

6.
In this work, the effect of spin-quadrupole forces on the 0+ sates in 158Gd has been investigated. For this purpose, the model Hamiltonian including monopole pairing, quadrupole-quadrupole and spin-quadrupole forces has been diagonalized in one phonon basis. In conclusion, for the distribution of energies of the states and their collective properties, fairly good results have been obtained.  相似文献   

7.
The renormalization of the relativistic self-consistent Hartree-Fock approximation is restudied. It is shown that the renormalization procedure suggested by Bielajew and Serot can be greatly simplified and the renormalization achieved in a way no more complicated than that of the relativistic self-consistent Fock approximation, if the parameters in the counterterms are allowed to be density-dependent and the renormalization of the tadpole self-energy is treated appropriately. A transformation relation between the four- and three-dimensional representation of the baryon self-energy is presented and a self-consistent Hartree-Fock scheme different from that considered by Bielajew and Serot studied. The renormalized integral equations for the baryon self-energy which includes effects from the Dirac sea are reformulated in a three-dimensional form. Explicit expressions are derived. Received: 29 August 1997 / Revised version: 30 April 1998  相似文献   

8.
Accurate assessment of the value of the incompressibility coefficient, K, of symmetric nuclear matter, which is directly related to the curvature of the equation of state (EOS), is needed to extend our knowledge of the EOS in the vicinity of the saturation point. We review the current status of K as determined from experimental data on isoscalar giant monopole and dipole resonances (compression modes) in nuclei, by employing the microscopic theory based on the random-phase approximation (RPA).  相似文献   

9.
We present a calculation of the neutrino-nucleon scattering cross-section which takes into account the nuclear correlations in the relativistic random phase approximation (RPA). Our approach is based on a quantum-hadrodynamics model with exchange of σ, ω, π, ρ and δ mesons. In view of applications to neutrino transport in the final stages of supernova explosion and proto-neutron star cooling, we study the evolution of the neutrino mean free path as a function of density, proton-neutron asymmetry and temperature. Special attention was paid to the issues of renormalization of the Dirac sea, residual interactions in the tensor channel, coupling to the delta-meson and meson mixing. In contrast with the results of other authors, we find that the neutral-current process is not sensitive to the strength g' of the residual contact interaction. As a consequence, it is found that RPA corrections with respect to the mean-field approximation amount to only 10% to 15% at high density. Received: 27 June 2001 / Accepted: 14 January 2002  相似文献   

10.
11.
We discuss to what extent information on ground-state properties of finite nuclei (energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizs?cker formula for ground-state energies. In particular, effects from the Wigner energy and shell structure on the symmetry energy are investigated. Strong correlations in the parameter space prevent a clear isolation of the surface contribution. Use of neutron skin information improves the situation. The result of the analysis appears consistent with a rather soft density dependence of the symmetry energy in nuclear matter.  相似文献   

12.
Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass ms and the color superconducting gap Δ. Increasing B and ms or decreasing Δ can stiffen the EOS which results in the larger maximum masses of neutron stars.  相似文献   

13.
Whether or not the deconfined quark phase exists in neutron star cores is an open question. We use two realistic effective quark models, the three-flavor Nambu-Jona-Lasinio model and the modified quark-meson coupling model, to describe the neutron star matter. We show that the modified quark-meson coupling model, which is fixed by reproducing the saturation properties of nuclear matter, can be consistent with the experimental constraints from nuclear collisions. After constructing possible hybrid equations of state (EOSes) with an unpaired or color superconducting quark phase with the assumption of the sharp hadron-quark phase transition, we discuss the observational constraints from neutron stars on the EOSes. It is found that the neutron star with pure quark matter core is unstable and the hadronic phase with hyperons is denied, while hybrid EOSes with a two-flavor color superconducting phase or unpaired quark matter phase are both allowed by the tight and most reliable constraints from two stars Ter 5 I and EXO 0748-676. And the hybrid EOS with an unpaired quark matter phase is allowed even compared with the tightest constraint from the most massive pulsar star PSR J0751+1807.  相似文献   

14.
Large-scale axial mean-field calculations from proton to neutron drip lines have been performed within the Hartree-Fock-Bogoliubov method based on the D1S Gogny force. Nearly 7000 nuclides have been studied under the axial symmetric hypothesis and various properties are displayed on an Internet web site for every individual nucleus. Some global properties are presented such as the positions of the drip lines, the nuclide ground-state deformations and binding energies as well as regions where possible super- or hyper-deformation might be encountered.  相似文献   

15.
An application of a self-consistent version of RPA to quantum field theory with broken symmetry is presented. Although our approach can be applied to any bosonic field theory, we specifically study the ϕ4 theory in 1 + 1 dimensions. We show that the standard RPA approach leads to an instability which can be removed when going to a superior version, i.e. the renormalized RPA. We present a method based on the so-called charging formula of the many-electron problem to calculate the correlation energy and the RPA effective potential. Received: 18 February 2002 / Accepted: 8 May 2002  相似文献   

16.
The renormalized random phase approximation for hot finite Fermi systems is evaluated with the use of the thermo field dynamics formalism. This approximation treats vibrations of a hot finite Fermi system as harmonic ones but takes into account the Pauli principle in a more proper way than the usual thermal RPA, thus incorporating a new type of correlations in a thermal ground state. To demonstrate advantages of the approximation and to analyze a range of its validity, it is applied to the exactly solvable Lipkin model. A comparison is made with the exact grand canonical ensemble calculations, results of the thermal Hartree – Fock approximation and the thermal random phase approximation. The intrinsic energy of the system, the heat capacity, the average value of the quasispin operator z-projection and the particle number variance are calculated as functions of temperature. On the whole, the thermal renormalized RPA appears to be a better approximation than the other two. Its advantage is especially evident in the vicinity of the phase transition point. It is found that within TRRPA the phase transition occurs at lower temperature than in THFA and TRPA. Received: 4 January 1999 / Revised version: 10 March 1999  相似文献   

17.
A new effect of self-consistency in the relativistic Hartree-Fock (HF) approximation is studied by a simple model and a renormalized calculation. A comparison is made between two different HF schemes: one requiring self-consistency in the HF potential (scheme P) and the other in the baryon propagator (scheme BP). Our results show that scheme P is a good aproximation to scheme BP for the calculation of the baryon propagator and the self-consistency requirements make the results obtained by the two schemes closer to each other, because the self-consistency in scheme BP diminishes the continuum part of the spectral representation for the baryon propagator, while the self-consistency in scheme P yields a baryon propagator which approximates closely to the HF result contributed by the converged single particle part of the above spectral representation alone. Received: 12 March 1999 / Revised version: 6 September 1999  相似文献   

18.
We present results for the spin-1 color-spin-locking (CSL) phase using a NJL-type model in two-flavor quark matter for compact stars applications. The CSL condensate is flavor symmetric and therefore charge and color neutrality can easily be satisfied. We find small energy gaps ≃ 1MeV, which make the CSL matter composition and the EoS not very different from the normal quark matter phase. We keep finite quark masses in our calculations and obtain no gapless modes that could have strong consequences in the late cooling of neutron stars. Finally, we show that the region of the phase diagram relevant for neutron star cores, when asymmetric flavor pairing is suppressed, could be covered by the CSL phase.  相似文献   

19.
Neutron stars with isovector scalar correlations   总被引:1,自引:0,他引:1  
Neutron stars with the isovector scalar δ-field are studied in the framework of the relativistic mean-field (RMF) approach in a pure-nucleon-plus-lepton scheme. The δ-field leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses. Both features are influencing the stability conditions of the neutron stars. Two parametrizations for the effective nonlinear Lagrangian density are used to calculate the nuclear equation of state (EOS) and the neutron star properties, and compared to correlated Dirac-Brueckner results. We conclude that in order to reproduce reasonable nuclear structure and neutron star properties within a RMF approach, a density dependence of the coupling constants is required.  相似文献   

20.
We investigate the properties of the neutron star with relativistic mean-field models. We incorporate in the quantum hadrodynamics and in the quark-meson coupling models a possible reduction of meson masses in nuclear matter. The equation of state for neutron star matter is obtained and is employed in Oppenheimer-Volkov equation to extract the maximum mass of the stable neutron star. We find that the equation of state, the composition and the properties of the neutron stars are sensitive to the values of the meson masses in medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号