首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we will investigate the fuzzy layer group symmetries of two-dimensional (2D) periodic molecules. Here, we select several graphene molecules as typical examples to discuss. For these two-dimensional graphene molecules, their MO energies, symmetries and fuzzy symmetries are preliminarily studied. In addition, we especially make a detailed comparison between the zigzag and armchair graphene molecules. These studies will develop a theoretical framework that will help us to investigate the fuzzy symmetries of various layer group molecules as well as molecules with 3D periodic structure.  相似文献   

2.
The performance of carbon nanotubes paste electrodes (CNTPE) prepared by dispersion of multi-wall carbon nanotubes (MWNT) within mineral oil is described. The resulting electrode shows an excellent electrocatalytic activity toward ascorbic acid, uric acid, dopamine, 3,4-dihydroxyphenylacetic acid (dopac) and hydrogen peroxide. These properties permit an important decrease in the overvoltage for the oxidation of ascorbic acid (230 mV), uric acid (160 mV) and hydrogen peroxide (300 mV) as well as a dramatic improvement in the reversibility of the redox behavior of dopamine and dopac, in comparison with the classical carbon (graphite) paste electrodes (CPE). The substantial decrease in the overvoltage of the hydrogen peroxide reduction (400 mV) associated with a successful incorporation of glucose oxidase (GOx) into the composite material, allow the development of a highly selective and sensitive glucose biosensor without using any metal, redox mediator or anti-interference membrane. No interference was observed at −0.100 V even for large excess of ascorbic acid, uric acid and acetaminophen. A linear response up to 30 mM (5.40 g l−1) glucose with a detection limit of 0.6 mM (0.11 g l−1) were obtained with the CNTPE modified with 10% w/w GOx. Such an excellent performance of CNTPE toward hydrogen peroxide, represents a very good alternative for developing other enzymatic biosensors.  相似文献   

3.
Since the first report in 1991, carbon nanotubes (CNTs) have shown great possibilities for a wide variety of processes and applications, which include their use as electrodes, sensors (gas, enzymatic, etc.), nanoprobes, electronic materials, field emitters, etc. The combination of structures, dimensions and topologies has provided physical and chemical attractive properties that are unparalleled by most known materials. Their applications have also reached the Analytical Chemistry field in which CNTs are being used as matrices in matrix assisted laser desorption ionization, stationary phases in either gas chromatography, high performance liquid chromatography or capillary electrochromatography, also as pseudostationary phases in capillary electrophoresis, etc. as well as new solid-phase extraction (SPE) materials. Concerning this last application the number of works has considerably increased in the last five years. This review article pretends to focus on the most important features and different applications of SPE using CNTs (including matrix solid-phase dispersion and solid-phase microextraction) covering articles published since their introduction up to now (September 2009).  相似文献   

4.
The aim of this review is to summarize the most relevant contributions in the development of electrochemical (bio)sensors based on carbon nanotubes in the last years.Since the first application of carbon nanotubes in the preparation of an electrochemical sensor, an increasing number of publications involving carbon nanotubes-based sensors have been reported, demonstrating that the particular structure of carbon nanotubes and their unique properties make them a very attractive material for the design of electrochemical biosensors.The advantages of carbon nanotubes to promote different electron transfer reactions, in special those related to biomolecules; the different strategies for constructing carbon nanotubes-based electrochemical sensors, their analytical performance and future prospects are discussed in this article.  相似文献   

5.
In this paper we investigate toroidal carbon nanotubes (carbon nanotori) encapsulating a single symmetrically located carbon atomic-chain. The interaction energy of the carbon chain is found from the Lennard-Jones potential using the continuous approach which assumes that atoms are uniformly distributed over the surface of the torus and the line of the circular chain with constant atomic surface and line densities, respectively. We assume that the chain is centrally located and that the carbon nanotorus is synthesized from a perfect carbon nanotube. We predict that the carbon chain can be encapsulated inside the carbon nanotorus when the cross-sectional radius \(r\) of the nanotorus is larger than 3.17 Å. At the minimum energy, a value of the toroidal radius \(R\) lies between 3.6 and 3.7 Å corresponding to each value of \(r\) . We also investigate the energy of carbon chains inside carbon nanotubes, which are (4,4), (5,5) and (10,0) tubes. We find that they are energetically favourable in (5,5) and (10,0) tubes, but not in a (4,4) tube, because it is geometrically too small, and these results are in agreement with existing studies. The same results for these three carbon nanotubes can also be obtained from the corresponding nanotori when \(R\) goes to infinity.  相似文献   

6.
Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6?years in (bio)analytical chemistry in general, and in biosensing in particular.
Figure
Carbon nanotubes and graphene in analytical applications  相似文献   

7.
Carbon nanotubes (CNTs) possess outstanding properties and a unique physicochemical architecture, which may serve as an alternative platform for the delivery of various therapeutic molecules. This review focuses on recent progress in the field of CNTs for biomedical applications. After a short, general physico-chemical introduction to CNTs, we introduce different methods for CNT surface modification, facilitating their dispersions in physiological solutions, on the one hand, and binding a wide range of molecules or drug-loaded liposomes, on the other. We summarize imaging evidences on the structure of CNT-drug conjugates and their relevant uptake mechanisms by the cell. Lastly, we review current repots on CNT toxicity and new developments in CNT-based medical applications: photo-thermal therapy, drug delivery and gene therapy.  相似文献   

8.
9.
The latest progress of using carbon nanotubes (CNTs) for in vivo cancer nanotechnology is reviewed. CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications. In vivo behaviors and toxicology studies of CNTs are summarized, suggesting no significant toxicity of well functionalized CNTs to the treated mice. Owing to their unique chemical and physical properties, CNTs, especially single-walled carbon nanotubes (SWNTs), have been widely used for various modalities of in vivo cancer treatment and imaging. Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.  相似文献   

10.
The structure and dynamics of benzene inside and outside of single-walled carbon nanotubes (SWNTs) in the (n,n) armchair configuration are studied via molecular dynamics computer simulations. Irrespective of the nanotube diameter, benzene molecules form cylindrical solvation shell structures on the outside of the nanotubes. Their molecular planes near the SWNTs in the first external solvation shell are oriented parallel to the nanotube surface, forming a π-stacked structure between the two. By contrast, the benzene distributions in the interior of the SWNTs are found to vary markedly with the nanotube diameter. In the case of the (7,7) and (8,8) nanotubes, internal benzene forms a single-file distribution, either in a vertex-to-vertex (n = 7) or face-to-face (n = 8) orientation between two neighboring molecules. Inside a slightly wider (9,9) nanotube channel, however, a cylindrical single-shell distribution of benzene arises. A secondary solvation structure, which begins to appear inside (10,10), develops into a full structure separate from the first internal solvation shell in (12,12). The ring orientation of internal benzene is generally parallel to the nanotube wall for n = 9-12, while it becomes either slanted with respect to (n = 7), or perpendicular to (n = 8), the nanotube axis. The confinement inside the small nanotube pores exerts a strong influence on the dynamics of benzene. Both translational and rotational dynamics inside SWNTs are slower and more anisotropic than in liquid benzene. It is also found that reorientational dynamics of internal benzene deviate dramatically from the rotational diffusion regime and change substantially with the nanotube diameter.  相似文献   

11.
The radical activity of single wall carbon nanotubes (SWCNT) and fullerene C60 in the radical polymerisation of acrylonitrile (AN) in N,N-dimethylformamide (DMF) initiated by 2,2′-azobis[2-methyl-ω-hydroxy-oligo(oxyethylene) propionate] [AIB-OOE(4 0 0)] and 2,2′-azoisobutyronitrile (AIBN) at 333 K was investigated in situ using a dilatometric method. The carbonaceous substances were sonicated in DMF before the polymerisation. The changes in the process proceeding in the presence of SWCNT and C60 in a comparison to the course of AN polymerisation without the participation of carbonaceous substances (the decrease of the reaction rate, the induction time) indicated on the inhibition effect, which can be described quantitatively using the inhibition parameter F. Single wall carbon nanotubes were found to act as retarders whereas fullerene C60 as an inhibitor in the AN polymerisation. The changes in the chemical structure of products reveal that the carbon nanotubes and fullerenes are chemically bonded with the polymer.  相似文献   

12.
Carbon nanotubes as separation carrier in capillary electrophoresis   总被引:6,自引:0,他引:6  
Wang Z  Luo G  Chen J  Xiao S  Wang Y 《Electrophoresis》2003,24(24):4181-4188
The utility and versatility of carboxylic single-walled carbon nanotubes (c-SWNT) in capillary electrophoresis (CE) is demonstrated, using as model solutes homologues and structural isomers. In the case of homologues of caffeine and theobromine, distinct changes in the electrophoretic parameters occur at a critical concentration of c-SWNT in the run buffer. It is suggested that the c-SWNT of a definite concentration could form a network in the run buffer as a pseudostationary phase on the basis of the unique tubule structure, providing a different separation from sodium dodecyl sulfate (SDS) micelles. In the case of structural isomers of catechol and hydroquinone, differing from the homologues, it is mainly attributable to the functional groups on the c-SWNT that have an effect on the electrophoretic behaviors by forming intermolecular hydrogen bonding with analytes. Furthermore, aggregated c-SWNT serve as anticonvective media and minimize solute diffusion contributing to zone broadening. The presence of charged c-SWNT suppressed the electrodiffusion and decreased the adsorption between capillary wall and solutes, which led to better peak shapes of isomers.  相似文献   

13.
[reaction: see text] Carbon nanotube salts prepared by treating single-wall carbon nanotubes (SWNTs) with lithium in liquid ammonia react readily with aryl iodides to give SWNTs functionalized by aryl groups.  相似文献   

14.
The review of literature data related to the preparation, properties, and application of carbon nanotubes for sorption recovery of elements is given. Experimental data on the application of Taunit carbon nanofor radionuclide preconcentration from different solutions, as well as of Taunit-based solid-phase extractants for recovery of actinides and rare-earth elements from nitric acid solutions are presented.  相似文献   

15.
The unique structure carbon of nanotubes endues them with superior electronic, optoelectronic, mechanical, and chemical performance. When combining with inorganic nanomaterials, the resultant composites show additional properties and broader applications. This review summarizes the handling of carbon nanotubes, the preparation of inorganic nanomaterial/carbon nanotube composites, and the application of such composites in a wide variety of fields.  相似文献   

16.
Carbon nanotubes as superior sorbent for dioxin removal.   总被引:36,自引:0,他引:36  
  相似文献   

17.
Surface functionalization of CNTs (SWCNTs or MWCNTs) with dendronized alkoxy terpyridine‐Ru(II)‐terpyridine complexes has been accomplished using either the “grafting to” or the “grafting from” approaches. Different sets of easily processable hybrid metallo‐CNTs composites have been efficiently synthesized bearing either monomeric or polymeric side chain tpy‐Ru(II)‐tpy dicomplexes. Their characterization through TGA, UV‐Vis, and Raman techniques revealed various modification degrees depending on the methodology employed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2551–2559, 2009  相似文献   

18.
19.
Various proteins adsorb spontaneously on the sidewalls of acid-oxidized single-walled carbon nanotubes. This simple nonspecific binding scheme can be used to afford noncovalent protein-nanotube conjugates. The proteins are found to be readily transported inside various mammalian cells with nanotubes acting as the transporter via the endocytosis pathway. Once released from the endosomes, the internalized protein-nanotube conjugates can enter into the cytoplasm of cells and perform biological functions, evidenced by apoptosis induction by transported cytochrome c. Carbon nanotubes represent a new class of molecular transporters potentially useful for future in vitro and in vivo protein delivery applications.  相似文献   

20.
La~2NiO~4催化制备纳米碳管   总被引:2,自引:0,他引:2  
制备了四方结构复合氧化物La~2NiO~4,并以其为催化剂前体,甲烷和一氧化碳为碳,合成出大量高纯度的纳米碳管。XRD结果表明La~2NiO~4经还原后,在La~2O~3的隔离作用下Ni晶粒实现纳米级均匀分散。利用TEM,HRTEM,SEM,XRD,Raman等手段对所制备的纳米碳管进行了观察和表征。所制备的纳米碳管管径均匀、石墨化程度较高,该法制备纳米碳管工艺简单、产量较高,产品易于纯化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号