首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The curing behavior of diglycidyl ether of bisphenol-A(DGEBA) with aromatic diamide-diimide-diamines having aryl ether,sulfone and methylene linkages was studied by differential scanning calorimetry(DSC).Nine diamide-diimide-diamines of varying structure were synthesized by reacting 1 mole of dianhydride with 2 moles of L-cysteine(S) in a mixture of acetic acid and pyridine(3:2 V/V) followed by activation with thionyl chloride(SOCl_2) and then condensation with excess of diamines.Structural characterizat...  相似文献   

2.
A novel kind of aromatic diamine,N-(4-(4-(2,6-diphenyl pyridine-4-yl)phenoxy)phenyl)-3,5-diaminobezamide (DPDAB),was synthesized via aromatic nucleophilic substitution of 3,5-dinitrobenzoylchloride with 4-(4-(2,6- diphenylpyridine-4-yl)phenoxy)aniline(DPPA),followed by palladium-catalyzed hydrazine reduction.This monomer was used to prepare polyimides(PIs)based on reaction with several commerically avaiable tetracarboxylic dianhydrides such as pyromellatic dianhydride(PMDA),benzophenone tetracarboxylic acide dianhydride(BTDA)and bicycle[2.2.2]oct-7-enc- 2,3,5,6-tetracarboxylic dianhydride(BCDA).These PIs had inherent viscosity in the range of 0.34-0.76 dL/g and showed good solubility in various aprotic polar solvents.The glass-transition tempratures(T_gs)of the PIs were in the range of 184-302℃,and showed high thermal stability with 10%weight loss in the temperature range of 360-500℃under nitrogen atmosphere.  相似文献   

3.
Toughened epoxy resin with excellent properties was obtained by adding organic acid anhydride curing agent and hydroxy-terminated butadiene-acrylonitrile copolymer (HTBN), which is cheaper than CTBN. The anhydride reacts with both epoxy groups on epoxy resin and hydroxyl groups on HTBN. As a result the soft long chains of HTBN and the rigid chain of epoxy resin form one network, giving the resin toughness. Two-phase structure of the toughened resin was observed by SEM and TEM.  相似文献   

4.
Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. A study on comparison of DGEBA/OAPS with DGEBA/4,4′-diaminodiphenyl sulfone (DDS) epoxy resins was achieved. Differential scanning calorimetry was used to investigate the curing reaction and its kinetics, and the glass transition of DGEBA/OAPS. Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins. The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy. Scanning electron microscopy was used to observe morphology of the two epoxy resins. The results indicated that OAPS had very good compatibility with DGEBA in molecular level, and could form a transparent DGEBA/OAPS resin. The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS. The DGEBA/OAPS resin didn’t exhibit glass transition, but the DGEBA/DDS did, which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points. Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin. Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield, but its initial decomposition temperature seemed to be lowered.  相似文献   

5.
官建国 《高分子科学》2010,28(6):961-969
<正>A high performance thermosetting epoxy resin crosslinkable at room temperature was obtained via directly moulding diglycidyl ether of bisphenol A(DGEBA) and flexibleα,ω-bisamino(n-alkylene)phenyl terminated poly(ethylene glycol).The influences of the n-alkylene inserted in aminophenyl of flexible amino-terminated polythers(ATPE) on the mechanical properties,fractographs and curing kinetics of the ATPE-DGEBA cured products were studied.The results show that the insertion of n-alkylene group into the aminophenyl group of the ATPE,on one hand,can significantly increase the strain relaxation rate and decrease glass transition temperature of the ATPE-DGEBA cured products,resulting in slight decrease of the Young's modulus and tensile strength,and significant increase of the toughness and elongation of the ATPE-DGEBA cured products.On the other hand,it can remarkably enhance the reactivity of amine with epoxy,much accelerating the curing rate of the ATPE-DGEBA systems.The activation energy of DGEBA cured by BAPTPE,BAMPTPE and BAEPTPE was 53.1,28.5 and 25.4 kJ·mol~(-1),respectively.The as-obtained ATPE-DGEBA cured products are homogeneous, transparent,and show excellent mechanical properties including tensile strength and toughness.Thus they are promising to have important applications in structure adhesives,casting bulk materials,functional coatings,cryogenic engineering, damping and sound absorbing materials.  相似文献   

6.
This article describes the synthesis of a series of aromatic amide-amines and their potential use as epoxy hardeners. These amines were synthesized by the reaction of L-phenylalanine(PA) with diamines of different structures i.e.1,4- phenylene diamine(PD),1,5-diamino naphthalene(N),4,4’-(9-fluorenyllidene)-dianiline(F),4,4’-diaminodiphenyl sulphide (DS) and 3,4’-oxydianiline(O) in a stoichiometric ratio(1:1).Structural characterization of synthesized amide-amines was done with the help of elemental analysis and spectroscopic techniques viz.FT-IR,1H-NMR and 13C-NMR.An epoxy blend was prepared by mixing tris(glycidyloxy) phosphine oxide(TGPO) with conventional epoxy i.e.diglycidyl ether of bisphenol-A(DGEBA) in an equivalent ratio of 2:3 to incorporate phosphorous into the main chain.The curing kinetics of the epoxy blend with synthesized aromatic amide-amines was investigated by non-isothermal DSC technique using multiple heating rate method(5,10,15 and 20 K/min.).The activation energies were determined by fitting the experimental data into Kissinger and Ozawa kinetic models.The activation energies obtained through Ozawa method were slightly higher than those of Kissinger method but were comparable.However,both the energies were found to be dependent on the structure of amines.The thermal stability and weight loss behavior of isothermally cured thermosets were also investigated using thermogravimetric analysis(TGA) in nitrogen atmosphere.All the samples showed improved thermal stability in terms of char yield than using only amines as hardeners.  相似文献   

7.
A novel bioresin, epoxidized soybean oil was synthesized by in situ method and was characterized employing FTIR and NMR. The bioresin was blended with epoxy(DGEBA) at different ratios as reactive diluents for improved processibility and toughened nature. The composition with 20 wt% bioresin exhibited improved impact strength to the tune of 60% as compared to virgin epoxy. Fracture toughness parameters critical stress intensity factor(KIC) and critical strain energy release rate(GIC) were evaluated using single edge notch bending test and demonstrated superior enhancement in toughness. Dynamic mechanical, thermal, thermo mechanical and fracture morphological analyses have been studied for bio-based epoxy blends. Curing kinetics has been evaluated through DSC analysis to investigate the effect of bioresin on cross-linking reaction of neat epoxy with triethylenetetramine as curing agent.  相似文献   

8.
<正>New flame-retardant polyimide-silver nanocomposite containing phosphine oxide moiety in the main chain was synthesized by a convenient ultraviolet irradiation technique.A precursor such as AgNO_3 was used as the source of the silver particles.Polyimide 6 as a source of polymer was synthesized by polycondensation reaction of bis(3-aminophenyl) phenyl phosphine oxide 4 with pyromellitic anhydride 5 in the presence of iso-quinoline as base and in m-cresol solution.The resulting composite film was characterized by FTIR spectroscopy,X-ray diffraction(XRD),transmission electron microscopy(TEM),thermogravimetry(TGA) and differential scanning calorimetry(DSC).The average size of the nanometer Ag particles is about 10 nm.The temperature of 5 and 10%weight loss and also the char yield at 600℃of polyimide-silver nanocomposite 6a were higher than the pure PI 6.  相似文献   

9.
张立群 《高分子科学》2015,33(3):433-443
The "sliding graft copolymer'(SGC), in which many linear poly-ε-caprolactone(PCL) side chains are bound to cyclodextrin rings of a polyrotaxane(PR), was prepared and employed to toughen diglycidyl ether of bisphenol A(DGEBA) based epoxy resin. The aim of the work is to understand the effect of SGC on the miscibility, morphology, thermal behavior, curing reaction and mechanical performance of the cured systems. From differential scanning calorimetry(DSC) analysis and dynamic mechanical thermal analysis(DMTA) of DGEBA/SGC thermosetting blends, it is found that DGEBA and SGC are miscible in the amorphous state. Fourier transform infrared spectroscopy(FTIR) suggested that the miscibility between SGC and DGEBA is due to the existence of intermolecular specific interactions(viz. hydrogen bonding). The impact strength is improved by 4 times for DGEBA/SGC(80/20) blends compared with that of the unmodified system. The increase in toughness of SGC-modified thermosets can be explained by the effect of intermolecular specific interactions of SGC with DGEBA, which is beneficial to induce the plastic deformation of matrix. This is the first report on utilizing this novel supramolecular polymer to toughen rigid epoxy matrix.  相似文献   

10.
Reaction-induced phase separation in rubber-modified epoxy resin   总被引:1,自引:0,他引:1  
The phase separation mechanism,and structure development during curing of epoxy with a novel liquid rubber-ZR were investigated by time-resolved light scattering,optical microscope and differential scanning calonmetry (DSC) The mixture loaded with curing agent was a single-phase system in the early stage of curing.When the cure reaction proceeded,phase separation took place via the spinodal decomposition induced by polymerization of epoxy resin.This was supported by the characteristic change of light scattering profile with curing time.Cure reaction plays an important role in the progress of phase separation.The bigger the cure reaction rate is,the longer periodic distance will be.The overall two-phase structure was basically locked in when the conversion approached 80% estimated by DSC,and finally the co-continuous two-phase structure was successfully obtained.  相似文献   

11.
Effect of structure on thermal behaviour of epoxy resins   总被引:1,自引:0,他引:1  
The paper deals with the curing behaviour of diglycidyl ether of bisphenol-A (DGEBA) using three novel multifunctional aromatic amines having phosphine oxide and amide-acid linkages. The amines were prepared by reacting tris(3-aminophenyl)phosphine oxide (TAP) with 1,2,4,5-benzenetetracarboxylic acid anhydride (P)/4,4-(hexafluoroisopropylidene)diphthalic acid anhydride (F)/3,3,4,4-benzophenonetetracarboxylic acid dianhydride (B). Amide-acid linkage in these amines is converted to thermally stable imide linkage during curing reaction. Curing temperatures of DGEBA were higher with phosphorylated amines than the conventional amine 4,4-diamino diphenyl sulphone (D). A decrease in initial decomposition temperature and higher char yields were observed when phosphorus containing amide-acid amines were used as curing agents for DGEBA.  相似文献   

12.
The curing behaviour of 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate was investigated by the dynamic differential scanning calorimetry (DSC) using phosphorus-containing poly(amide–imide)s (PAIs) having free amine groups, 4,4′-diaminodiphenylmethane (PM) and p-phenylenediamine (PA), in the ratio of 1:1. The PAIs were prepared by co-polymerization of diimide–diacid (DIDA) and phosphorus-containing triamines having phenylene moiety. l-Tryptophan and pyromellitic anhydride were used to synthesize DIDA. Triamines used in the synthesis PAIs were tris(3-aminophenyl) phosphine (TAP), tris(3-aminophenyl) phosphine oxide (TAPO) and bis(3-aminophenyl) aminotolyl phosphine (BAP). TAP-, TAPO- and BAP-containing PAIs were designated as PTAP, PTAPO and PBAP, respectively. These PAIs with free amine groups were characterized by FTIR, 1H NMR, 13C NMR spectroscopic techniques and elemental analysis. The mixture of PAIs and PM or/and PA in the ratios of 0:1, 1:0 and 0.5:0.5 was used for investigation. DSC was used to study the curing of epoxy by recording the DSC scans at heating rates of 10 °C min?1. Thermal stability of epoxy resin cured isothermally was evaluated by recording thermo gravimetric traces in nitrogen atmosphere at the heating rate of 20 °C min?1. All samples are highly stable, and the 10 % mass loss found was in the range of 335–520 °C. The percent char yield was highest in case of resin sample E/PM/PTAPO. The flame-retardant properties of cured epoxy resins were investigated by the limiting oxygen index test (LOI) and UL94 test. When phosphorus was incorporated in epoxy resin, the epoxy resin system met the UL94 V-0 classification and the LOI reached at 37.8, because of nitrogen–phosphorus synergistic effect.  相似文献   

13.
A series of sulfonated polyimides (SPIs) were synthesized from a sulfonated diamine of 4,4′‐bis(4‐aminophenoxy) biphenyl‐3,3′‐disulfonic acid (BAPBDS), common nonsulfonated diamines, and various tetracarboxylic dianhydrides including 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA), 3,4,9,10‐perylene tetracarboxylic dianhydride (PTDA), 4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (BTDA), 4,4′‐ketone dinaphthalene 1,1′,8,8′‐tetracarboxylic dianhydride (KDNTDA), and isophthatic dinaphthalene 1,1′,8,8′‐tetracarboxylic dianhydride (IPNTDA). Their membrane properties were investigated to clarify the effects of the dianhydrides. They displayed reasonably high mechanical properties, thermal stability, and proton conductivity. The dianhydrides with flexible and non‐coplanar structure (IPNTDA > KDNTDA > BTDA) led to the better solubility of the SPIs than those with rigid and coplanar one (NTDA, PTDA). The dianhydride with the smaller molecular weight led to the larger value of the number of sorbed water molecules per sulfonic acid group (λ) in membrane, that is, NTDA (λ: 17) > PTDA (15) > BTDA (14) > KDNTDA (12) > IPNTDA (10), and as a result let to the larger proton conductivity in water. All of the BAPBDS‐based SPIs showed the anisotropy in membrane swelling and in proton conductivity, of which the degree hardly depended on the dianhydride moieties. The water stability of SPI membranes against the aging in water at 130 °C for 192 h was in the order, PTDA = NTDA ≧ BTDA > KDNTDA > IPNTDA. The hydrolysis stability of polymer chain was similar between the BTDA‐ and KDNTDA‐based SPIs. These results are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 905–915, 2010  相似文献   

14.
A series of hexachloronadimides containing phosphine oxide in the backbone were synthesized by the reaction of bis(3-amino phenyl) methyl phosphine oxide (BAP) with pyromellitic dianhydride (PMDA)/3,3’,4,4’-benzophenone tetracarboxylic acid dianhydride (BTDA)/2,2-bis(3,4-dicarboxy phenyl) hexafluoropropane dianhydride (6F) and hexachloronadic anhydride in glacial acetic acid/acetone. Structural characterisation of the resins was carried out by infrared, nuclear magnetic resonance spectroscopy and elemental analysis. Thermal characterisation of uncured resin was done by differential scanning calorimetry and thermogravimetric analysis. The decomposition temperature of uncured resins were above 310±10°C with T max 330±10°C in nitrogen atmosphere. Char yield at 800°C ranged from 37–42%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A series of ethynyl and ethenyl end-capped imide resins were synthesised by the reaction of 9,9-bis(4-aminophenyl) fluorene (BAF) with pyromellitic dianhydride (PMDA)3/3′, 4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA)/2,2-bis(3,4-dicarboxy phenyl) hexafluoropropane dianhydride (6F) and 3-ethynyl aniline/maleic anhydride. Structural characterisation was done by infra red and elemental analysis. Thermal characterisation was done by differential scanning calorimetry and thermogravimetric analysis. The decomposition temperatures of cured resins were above 200°C in nitrogen atmosphere. Char yield at 800°C ranged from 59–65.5%.  相似文献   

16.
This paper describes the synthesis and characterization of aromatic diimide–diacids (DIDAS) obtained by reacting pyromellitic dianhydride (PMDA), 4,4′-oxo diphthalic anhydride (ODA), 1,4,5,8-naphthalene tetra carboxylic dianhydride (NTDA) with excess of 4-aminobutyric acid (B) or 6-aminohexanoic acid (H) using N,N-dimethyl formamide (DMF) as solvent. The synthesized compounds were used as curing agents to investigate the effect of structure on the curing and thermal behaviour of diglycidyl ether of bisphenol-A (DGEBA). Structural characterization of DIDAS was done by using FTIR, 1H-NMR, 13C-NMR spectroscopy and elemental analysis. Curing behaviour of DGEBA in the presence of aromatic DIDAS was investigated by differential scanning calorimetry (DSC). The peak exotherm temperature (T P) was low in the case of DIDAS synthesized from ODA and high in the case of DIDAS synthesized from NTDA. Thermal stability of the isothermally cured DGEBA with DIDAS was investigated using dynamic thermogravimetry in nitrogen atmosphere. The char yield was highest for resin cured with DIDAS containing NTDA.  相似文献   

17.
A novel diamine, bis‐(3‐aminophenyl)‐4‐(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), containing phosphine oxide and fluorine moieties was prepared via the Grignard reaction from an intermediate, 4‐(trifluoromethyl)phenyl diphenyl phosphine oxide, that was synthesized from diphenylphosphinic chloride and 4‐(trifluoromethyl)bromobenzene, followed by nitration and reduction. The monomer was characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR, 19F NMR spectroscopies; elemental analysis; melting point measurements; and titration and was used to prepare polyimides with a number of dianhydrides such as pyromellitic dianhydride (PMDA), 5,5′‐[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethyliden]‐bis‐1,3‐isobenzofuranedione (6FDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐oxydiphthalic dianhydride (ODPA). Polyimides were synthesized via a conventional two‐step route; preparation of polyamic acids, followed by solution imidization, and the molecular weight were controlled to 20,000 g/mol. Resulting polyimides were characterized by FTIR, NMR, DSC, and intrinsic viscosity measurements. Refractive‐index, dielectric constant, and adhesive properties were also determined. The properties of polyimides were compared with those of polyimides prepared from 1,1‐bis‐(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3FDAm) and bis‐(3‐aminophenyl) phenyl phosphine oxide (mDAPPO). The polyimides prepared from mDA3FPPO provided high glass‐transition temperatures (248–311 °C), good thermal stability, excellent solubility, low birefringence (0.0030–0.0036), low dielectric constants (2.9–3.1), and excellent adhesive properties with Cu foils (107 g/mm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3335–3347, 2001  相似文献   

18.
A new aromatic unsymmetrical diamine monomer, 1,4-(2′,4″-diaminodiphenoxy)benzene (OAPB), was successfully synthesized in three steps using hydroquinone as starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride (6FDA) and pyromellitic dianhydride (PMDA) via the conventional two-step thermal or chemical imidization method to produce a series of the unsymmetrical aromatic polyimides. The polyimides were characterized by solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X-ray diffraction studies, and thermogravimetric analysis. The polyimides obtained had inherent viscosities ranged of 0.38-0.58 dL/g, and were easily dissolved in common organic solvents. The resulting strong and flexible PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) of above 505 °C and the glass transition temperature in the range of 230-299 °C. Moreover, the polymer films showed outstanding mechanical properties with the tensile strengths of 41.4-108.5 MPa, elongation at breaks of 5-9% and initial moduli of 1.15-1.68 GPa.  相似文献   

19.
Various phosphorus-containing polyimides were prepared by the reaction of 1-[(dialkoxyphosphinyl)methyl]-2,4- and -2,6-diaminobenzenes (1) with a tetracarboxylic dianhydride like pyromellitic dianhydride (PMDA) and benzophenone tetracarboxylic dianhydride (BTDA). In addition, copolyimides that contained approximately 3% phosphorus were prepared by the reaction of 1 and m-phenylenediamine (MPD) with the aforementioned tetracarboxylic dianhydrides. Elemental analysis, inherent viscosity, infrared (IR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) studies were performed to characterize the polymers. Their thermal properties were compared with those of the corresponding common polyimides. It was shown that the molecular weight and thermal stability of the polymers were reduced as the concentration of the phosphorus moieties increased. The fire-resistance of the copolyimides was evaluated by determining their limiting oxygen index (LOI) value. Copolyimides that contained about 3% phosphorus showed an LOI value approximately 30% higher, than the value of the corresponding common polyimides. In addition, a model diamic acid and diimide was synthesized by the reaction of 1-[di(2-chloroethoxyphosphinyl)methyl]-2,4- and - 2,6-diaminobenzene (DCEPD) with phthalic anhydride and characterized by elemental analysis, IR, proton nuclear magnetic (1H-NMR) spectroscopy, DSC, and TGA. The pyrolysis behavior of the model compounds was investigated by gas chromatography-mass spectrometry (GC-MS). A direct cleavage of the P? C bond and a possible rearrangement to diisocyanates occurred during their pyrolysis.  相似文献   

20.
A series of diamide?Cdiimide?Cdiamines (DADIDAs) were synthesized by reacting diacid N,N??-(3,3??,4,4??-benzophenone tetracarboxylic)-3,3??4,4?? diimido-bis-l-phenylalanine (I) with different aromatic diamines viz. 1,4-phenylene diamine (PD), 1,5-diamino naphthalene (N), 4,4??-(9-fluorenyllidene)-dianiline (F), 4,4??-diaminodiphenyl sulphide (DS) and 3,4??-oxydianiline (O). The diacid (I) was synthesized by the condensation of 3,3??,4,4??-benzophenone tetracarboxylic dianhydride (BTDA) with l-phenylalanine (PA) in a solution of glacial acetic acid and pyridine (3:2 v/v) at refluxing temperature. The resulting DADIDAs so synthesized were characterized with the help of elemental analysis (EA) and spectroscopic techniques, and were used as epoxy curing agents. Two epoxy blends (EP and ES) were prepared, each by mixing in an equivalent ratio of 2:3 of tris(glycidyloxy)phosphine oxide (TGPO) with diglycidyl ether of bisphenol-A (DGEBA) and 1,3-bis(3-glycidyloxypropyl)tetramethyl disiloxane (BGPTMSO) with diglycidyl ether of bisphenol-A (DGEBA), respectively. A series of new epoxy thermosets with good thermal stability were prepared by reacting EP/ES with synthesized DADIDAs stoichiometrically. Thermal properties of these epoxy resins were observed using the techniques viz. Differential scanning calorimeter (DSC) for curing behaviour and Thermogravimetric analysis (TGA) to study the thermal stability and mass loss behaviour. All the samples showed good thermal stabilities in terms of char yield (24.8?C52.7) and calculated LOI (27.4?C38.6), thereby demonstrate their effective use as flame retardant systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号