首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photophysical properties of fullerene and/or phthalocyanine dyes embedded in ordered mesoporous silica films and the influence of annealing temperature on the nature of the immobilized dye molecules has been investigated using photoluminescence (PL) and diffuse reflectance (DR) studies. The PL and DR studies show that fullerene (C60) and/or zinc phthalocyanine (ZnPc) molecules incorporated into transparent mesoporous silica films, via either sol-gel or grafting routes, exist predominantly in monomeric form. Careful choice of annealing temperature, between 25 and 225 degrees C, can further enhance monomeric dispersion. For C60-containing films, monomeric dispersion of fullerene was observed for annealing temperatures up to 175 degrees C for sol-gel derived films and 225 degrees C for grafted films. Both sol-gel and grafted ZnPc-containing films showed evidence of monodispersed phthalocyanine for annealing temperatures up to 225 degrees C. In general, annealing temperatures in the range 125-175 degrees C were found to yield optimal monodispersion of the dye molecules. When both C60 and ZnPc were incorporated into the silica films, no evidence of interaction between the dyes, i.e., charge-transfer transitions or the formation of fullerene/phthalocyanine charge-transfer complexes, was observed. This suggests that embedded fullerene and phthalocyanine molecules may be used for the preparation of solid-state optical limiters, based on reverse saturable absorption, where monomeric dispersion of the dye molecules is important.  相似文献   

2.
The separation of C60 and C70 fullerenes on four different polysiloxane stationary phases was examined. It was determined that polar solvents can be used as mobile phases effectively for the separation of fullerene molecules. Unlike previously published work, a polymeric octadecyl siloxane (ODS) stationary phase provided higher separation factors for C70/C60 than did monomeric ODS stationary phases or phenyl substituted stationary phases. For example, for a methanol-diethyl ether (50:50, v/v) mobile phase and C60, k' approximately 5.0 separation factors, alpha = 3.3, were achieved with polymeric ODS compared to alpha = 2.2, with a monomeric ODS stationary phase. A linear solvation energy relationship (LSER) was used to model the importance of solvent interactions and stationary phase interaction to solute retention.  相似文献   

3.
Endohedral and external through-space NMR shieldings (TSNMRS) and the magnetic susceptibilities of the fullerene carbon cages of C50, C60, C60(-6), C70, and C70(-6) were assessed by ab initio molecular orbital calculations. Employing the nucleus-independent chemical shift (NICS) concept, these TSNMRS were visualized as isochemical shielding surfaces (ICSS) and were applied to quantitatively estimate either the aromaticity or the anti-aromaticity on the fullerene surface pertaining to the five- or six-membered ring moieties and the shielding of any nuclei enclosed within the carbon cages. Differences between the NICSs calculated at the center of the fullerene carbon cages and the experimental chemical shifts of encapsulated NMR-active nuclei as well as experimental shieldings observed for different encapsulated nuclei were able to be understood readily for the first time.  相似文献   

4.
Scanning tunneling microscopy (STM) and low-energy electron diffraction were used to reveal the structures of ordered adlayers of [2+2]-type C60-C60 fullerene dimer (C120) and C60-C70 cross-dimer (C130) formed on Au(111) by immersingit in abenzene solution containing C120 or C130 molecules. High-resolution STM images clearly showed the packing arrangements and the electronic structures of C120 and C130 on the Au(111) surface in ultrahigh vacuum. The (2 square root3 x 4square root3)R30 degrees, (2square root3 x 5square root3)R30 degrees, and (7 x 7) structures were found for the C120 adlayer on the Au(111) surface, whereas C130 molecules were closely packed on the surface. Each C60 or C70 monomer cage was discerned in the STM image of a C130 molecule.  相似文献   

5.
The molecular orientation of ellipsoidal C(70) in single-walled carbon nanotubes (SWCNTs) depends on the tube diameter (d(t)). Photoluminescence (PL) studies reveal that the fullerene encapsulation effects on the optical transition energy of SWCNTs are significantly different for C(70) and C(60) at d(t) = 1.405-1.431 nm. This indicates that the transition from the "lying" alignment to the "standing" alignment occurs at d(t) ≈ 1.41 nm and the electronic states of SWCNTs are very sensitive to the interspacing between the encapsulated molecules and the SWCNTs. The present findings suggest that the electronic structure of SWCNTs is tunable not only by alternating the encapsulated molecules but also by controlling their molecular orientations, thus paving the way for development of novel SWCNT-based devices.  相似文献   

6.
It was found that [60]fullerene encapsulated in p-sulfonatocalix[8]arene and single-walled carbon nanotubes (SWNTs) solubilized by sodium dodecylsulfate can be readily deposited on the ITO electrode by electrochemical oxidative polymerization of ethylenedioxythiophene (EDOT) without chemical modification of these carbon clusters. The driving force for the deposition is an electrostatic interaction between the anionic complexes and the cationic charges of poly(EDOT) formed in the oxidative polymerization process. The surface morphology was thoroughly characterized by scanning electron micrograph: the [60]fullerene/poly(EDOT) film is covered by nano-particles with 20-100 nm diameters whereas the SWNTs/poly(EDOT) film is covered by nanorods with several microm length and ca. 100 nm diameter. The results indicate that the anionic complexes act as nuclei for the polymer growth in the oxidation polymerization. Interestingly, when these modified ITO electrodes were photoirradiated, the appearance of a photocurrent wave was observed. The action spectra showed that the photoexcited energy of [60]fullerene or SWNTs is efficiently collected by the electroconductive poly(EDOT) film and transferred to the ITO electrode.  相似文献   

7.
Compound clusters of fullerene molecules and transition metal atoms having the composition C60Mx and C70Mx with x = 0..150 and M ∈ {Ti, Zr, V, Y, Ta, Nb} were produced using laser vaporisation in a low-pressure inert gas aggregation cell. Intensity anomalies in the mass spectra correlate with the atomic radii of the different metals indicating the formation of complete metal layers around the central fullerene molecule. Using high laser intensities the metal-fullerene clusters can be transformed into metcars and metal-carbides. Photofragmentation spectra of preselected C60Tax indicate that the fullerene cage is destroyed for x ≥ 3.  相似文献   

8.
We describe a photoswitch fabricated on indium tin oxide (ITO) as a self-assembled monolayer (SAM) of two fullerene molecules, a purely organic [60]fullerene that generates an anodic current and a [70]fullerene doped with a single iron atom. This device generates a bidirectional photocurrent upon irradiation at 340 and 490 nm. The new [70]fullerene iron complex bearing three rigid carboxylic acid legs, Fe[C(70)(C(6)H(4)C(6)H(4)COOH)(3)]Cp, generates only a cathodic current upon photoexcitation between 350 and 700 nm, whereas the organic [60]fullerene absorbs at wavelengths shorter than 500 nm. The quantum efficiency of the photocurrent generation by the mixed SAM is comparable to that of a single-component SAM, indicating that the individual diode molecules on ITO generate photocurrents independently with little cross talk.  相似文献   

9.
We report a photoelectron spectroscopy (PES) study on a series of fullerene oxides, C60Ox- (x = 1-3). The PES spectra reveal one isomer for C60O-, two isomers for C60O2, and multiple isomers for C60O3-. Compared to C60, the electronic structures of C60Ox are only slightly perturbed, resulting in similar anion photoelectron spectra. The electron affinity of C60Ox was observed to increase only marginally with the number of oxygen atoms, x, from 2.683 eV for C60, to 2.745 eV for C60O, and 2.785 eV/2.820 eV for C60O2 (two isomers). We also carried out theoretical calculations, which confirmed the observed isomers and showed that all the fullerene oxides are in the form of epoxide. The PES and theoretical calculations, as well as molecular orbital analysis, indicate that addition of oxygen atoms to the C60 cage only modifies the local carbon network and leave the rest of the fullerene cage largely intact geometrically and electronically.  相似文献   

10.
New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins [M(tpp)] in which M-H2, MnII, CoII, CuII, ZnII and Fe(III)Cl, have been synthesised. Crystal structures of two C60 complexes with H2TPP, which differ only in the number of benzene solvated molecules, and C60 and C70 complexes with [Cu(tpp)] have been studied. The fullerene molecules form a honeycomb motif in H2TPP.2C60. 3C6H6, puckered graphite-like layers in H2TPP.2C60.4C6H6, zigzag chains in [Cu(tpp)].C70.1.5C7H8.0.5C2HCl3 and columns in [Cu(tpp)]2.C60. H2TPP has van der Waals contacts with C60 through nitrogen atoms and phenyl groups. Copper atoms of the [Cu(tpp)] molecules are weakly coordinated with C70, but form no shortened contacts with C60. The formation of molecular complexes with fullerenes affects the ESR spectra of [M(tpp)] (M = Mn, Co and Cu). [Mn(tpp)] in the complex with C70 lowers its spin state from S = 5/2 to S = 1/2, whereas [Co(tpp)] and [Cu(tpp)] change the constants of hyperfine interaction. ESR, IR, UV-visible and X-ray photoelectron spectroscopic data show no noticeable charge transfer from the porphyrinate to the fullerene molecules.  相似文献   

11.
Heating a bulk sample of [60]fullerene complexes, (η(5)-C(5)H(5))MC(60)R(5) (M = Fe, Ru, R = Me, Ph), produces small hydrocarbons because of coupling of R and C(5)H(5) via C-C and C-H bond activation. Upon observation by transmission electron microscopy, these complexes, encapsulated in single-walled carbon nanotubes, underwent C-C bond reorganization reactions to form new C-C bond networks, including a structure reminiscent of [70]fullerene. Quantitative comparison of the electron dose required to effect the C-C bond reorganization of fullerenes and organofullerenes in the presence of a single atom of Ru, Fe, or Ln and in the the absence of metal atoms indicated high catalytic activity of Ru and Fe atoms, as opposed to no catalytic activity of Ln. Organic molecules such as hydrocarbons and amides as well as pristine [60]fullerene maintain their structural integrity upon irradiation by ca. 100 times higher electron dose compared to the Ru and Fe organometallics. The results not only represent a rare example of direct observation of a single-metal catalysis but also have implications for the use of single metal atom catalysis in Group 8 metal heterogeneous catalysis.  相似文献   

12.
Unsymmetric dumbbell molecules based on N-methylpyrrolidine[60]fullerene, oligothienylenevinylenes (nTV; n=2, 4), and N-methylpyrrolidine[70]fullerene, namely, C(60) -nTV-C(70) were synthesized and their photophysical properties were studied. In nonpolar solvents, photoinduced energy-transfer process predominantly takes place from the singlet excited state of nTV to C(60) and C(70) , as was confirmed by time-resolved emission and transient absorption spectroscopy. In polar solvent, charge-separation processes take place instead of energy transfer. The generated charge-separated radical-ion pairs decay to the neutral molecules by a fast charge-recombination process; for n=4, a rate constant of 2×10(7) s(-1) and lifetime of 50 ns were evaluated.  相似文献   

13.
We present the results of first-principles calculations for polymers (C(60)-Co)(n) and (C(70)-Co)(n), which consist of alternating chains of fullerenes and cobalt. Both of them favor a ferromagnetic ground state. The latter one is a half-metal which will give rise to 100% spin polarization in the electronic transport, while the former is a semiconductor. Polymers (N@C(60)-Co)(n) and (N@C(70)-Co)(n), which encapsulate a nitrogen atom in each fullerene have magnetic moments four times larger than those without encapsulated nitrogen atoms. All these results can be explained in terms of pi(fullerene)-d(Co) and pi(fullerene)-p(N) hybridizations.  相似文献   

14.
Energetic-radiation-induced dimerization reaction of fullerenes was found to be a simple and highly selective method for synthesis of C2m-X-C2n (m = n or m not equal n) type molecules without formation of other products. Utilizing the new method, C70-C-C70, C60-C-C70, C60-C-C60, and C70-O-C70 were prepared and characterized. The method is capable of synthesizing new C2m-X-C2n molecules by introducing X (different atoms) into the reaction system. Energetic radiation created reactive sites for covalently bonded bridges between fullerene molecules originally only weakly bound by van der Waals force. This observation may open a new subject and practicable approach for polymer sciences of fullerenes.  相似文献   

15.
Thin films and monoliths of mesostructured silica containing embedded monodispersed molecules of C60 may be prepared via a sol-gel route in which the C60 is added during the synthesis or via post-synthesis adsorption; evidence from diffuse reflectance spectroscopy suggests that the embedded C60 exist predominantly in monomeric form.  相似文献   

16.
Vibronic states are observed in single C(60) and C(70) molecules by scanning tunneling microscopy. When single fullerene molecules are adsorbed on a thin layer of Al(2)O(3) grown on a NiAl(110) substrate, equally spaced features are observed in the differential conductance (dI/dV), which are clearly resolved in d(2)I/dV(2) spectra. These features are attributed to the vibronic states of the molecule. The vibronic progressions are sensitive to the molecular orientations and can have different spacings in different electronic bands of the same molecule. For C(60,) these vibronic states are associated with the intramolecular A(g) and H(g) vibrational modes. Vibronic states are not resolved in molecules adsorbed on the metal surface. However, inelastic electron tunneling spectroscopy exhibits a vibrational mode at 64 meV for C(60) and 61 meV for C(70) adsorbed on NiAl(110).  相似文献   

17.
The encapsulation of molecular hydrogen into an open-cage fullerene having a 16-membered ring orifice has been investigated. It is achieved by the pressurization of H2 at 0.6-13.5 MPa to afford endohedral hydrogen complexes of open-cage fullerenes in up to 83% yield. The efficiency of encapsulation is dominantly dependent on both H2 pressure and temperature. Hydrogen molecules inside the C60 cage are observed in the range of -7.3 to -7.5 ppm in 1H NMR spectra, and the formations of hydrogen complexes are further confirmed by mass spectrometry. The trapped hydrogen is released by heating. The activation energy barriers for this process are determined to be 22-24 kcal/mol. The DSC measurement of the endohedral H2 complex reveals that the escape of H2 from the C60 cage corresponds to an exothermic process, indicating that encapsulated H2 destabilizes the fullerene.  相似文献   

18.
Palladium- and ruthenium-doped C(60) fullerene compounds were synthesized by incipient wetness impregnation of C(60) fullerene with the corresponding metal acetylacetonate precursors. Transmission electron microscopy (TEM) imaging of the metal-doped C(60) fullerene samples showed different dispersion morphologies of palladium and ruthenium particles on the C(60) matrix. Raman spectra revealed a drastic decrease in peak intensity followed by disappearance of several bands indicating the distortion of the C(60) cage structure. The amorphous nature of the C(60) fullerene compounds was confirmed by the X-ray diffraction study. Hydrogen adsorption amount of 0.85 wt % and 0. 69 wt % on Pd-C(60) and Ru-C(60), respectively, as compared to 0.3 wt % on the pure C(60) fullerene were measured at 300 bar and 298 K. The enhancement in the hydrogen uptakes can be attributed to several factors, including adsorption of molecular H(2) on the defect sites, metallic hydride formation, spillover of hydrogen, and bond formation with atomic hydrogen with different active sites of carbon of host fullerene. The hydrogen adsorption isotherms are of type III and can be correlated by the Freundlich (for Ru-C(60)) and modified Oswin equations (for Pd-C(60) and pristine C(60)).  相似文献   

19.
The preparation of fullerene complexes with metal tetraarylporphyrins in the presence of excess ferrocene (Cp(2)Fe) results in the formation of new solvent-free and multicomponent molecular crystals. New isomorphous complexes of C(60) with PyZnTPP (ZnTPP identical with zinc 5,10,15,20-tetraphenyl-21H,23H-porphyrinate) and PyCoTPP (CoTPP identical with cobalt(II) 5,10,15,20-tetraphenyl-21H,23H-porphyrinate) containing Cp(2)Fe and the isostructural C(70) complex with PyZnTPP have been prepared. The crystal structures of the new layered C(60) complexes CoTMPP x C(60) (obtained in the presence of Cp(2)Fe) and CoTMPP x 2C(60) x 3C(7)H(8) (obtained in the absence of Cp(2)Fe) have been described (CoTMPP identical with cobalt(II) 5,10,15,20-tetrakis(p-methoxyphenyl)-21H,23H-porphyrinate). Cobalt atoms of the PyCoTPP and CoTMPP molecules are weakly coordinated to C(60) with Co...C(C(60)) distances in the 2.64-2.82 A range, whereas zinc atoms of PyZnTPP, as well as cobalt atoms of the CoTMPP molecules in the solvent-free phase, form only van der Waals contacts with fullerenes. Different packing arrangements in the crystals of fullerene-porphyrin complexes have been discussed.  相似文献   

20.
Dynamic covalent chemistry (DCC) provides an intriguing and highly efficient approach for building molecules that are usually thermodynamically favored. However, the DCC methods that are efficient enough to construct large, complex molecules, particularly those with three-dimensional (3-D) architectures, are still very limited. Here, for the first time, we have successfully utilized alkyne metathesis, a highly efficient DCC approach, to construct the novel 3-D rectangular prismatic molecular cage COP-5 in one step from a readily accessible porphyrin-based precursor. COP-5 consists of rigid, aromatic porphyrin and carbazole moieties as well as linear ethynylene linkers, rendering its shape-persistent nature. Interestingly, COP-5 serves as an excellent receptor for fullerenes. It forms 1:1 complexes with C(60) and C(70) with association constants of 1.4 × 10(5) M(-1) (C(60)) and 1.5 × 10(8) M(-1) (C(70)) in toluene. This represents one of the highest binding affinities reported so far for purely organic fullerene receptors. COP-5 shows an unprecedented high selectivity in binding C(70) over C(60) (K(C70)/K(C60) > 1000). Moreover, the binding between the cage and fullerene is fully reversible under the acid-base stimuli, thus allowing successful separation of C(70) from a C(60)-enriched fullerene mixture (C(60)/C(70), 10/1 mol/mol) through the "selective complexation-decomplexation" strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号