首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The HF, MP2, MP3, MP4, and QCISD ab initio methods were compared with local, hybrid, and gradient-corrected density functional theory (DFT) methods for computing structures and energies of N2F4 rotamers. In all DFT calculations 6-311 + G(2d) basis set was used. The generated structures energies of trans- and gauche-N2F4 rotamers, and their dissociation energies to nitrogen difluoride were compared with experimental data. Suitable hybrid and gradient-corrected DFT methods for determining structures and energies for these and similar molecular systems were discussed.  相似文献   

2.
The geometries and energies of small oxygen containing molecules are studied by both the ab initio and density functional theory (DFT) methods. The RHF, MP2, and QCISD(T) ab initio methods, BHandH, BHandHLYP, BeckeSLYP, Becke3P86 DFT hybrid methods, BLYP, and the BP86 non-local DFT methods with the 3-21G1, 6-31G(d,p), 6-311 + G(2d,2p) and 6-311 + + G(3df,3pd) basis sets were used for the computational study. The obtained results from the different methods were compared to the experimental values. The suitability of the DFT methods for reproducing experimental data were discussed.  相似文献   

3.
Hartree-Fock (HF) calculations using 6-31G*, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets show that hydrogen peroxide molecular clusters tend to form hydrogen-bonded cyclic and cage structures along the lines expected of a molecule which can act as a proton donor as well as an acceptor. These results are reiterated by density functional theoretic (DFT) calculations with B3LYP parametrization and also by second-order M?ller-Plesset perturbation (MP2) theory using 6-31G* and 6-311++G(d,p) basis sets. Trends in stabilization energies and geometrical parameters obtained at the HF level using 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are similar to those obtained from HF/6-31G* calculation. In addition, the HF calculations suggest the formation of stable helical structures for larger clusters, provided the neighbors form an open book structure.  相似文献   

4.
The reaction of acetonitrile with hydroxyl has been studied using the direct ab initio dynamics methods. The geometries, vibrational frequencies of the stationary points, as well as the minimum energy paths were computed at the BHandHLYP and MP2 levels of theory with the 6-311G(d, p) basis set. The energies were further refined at the PMP4/6-311+G(2df, 2pd) and QCISD(T)/6-311+G(2df, 2pd) levels of theory based on the structures optimized at BHandHLYP/6-311G(d, p) and MP2/6-311G(d, p) levels of theory. The Polyrate 8.2 program was employed to predict the thermal rate constants using the canonical variational transition state theory incorporating a small-curvature tunneling correction. The computed rate constants are in good agreement with the available experimental data.  相似文献   

5.
The hydrogen bonding interaction of 1:1 dimer formed between HNO and HArF molecule has been completely investigated in the present study using Second-order M?ller-Plesset Perturbation (MP2) method in conjunction with 6-311+G**, 6-311++G** and 6-311++G(2d,2p) basis sets. The standard and CP-corrected calculations have been employed to determine the equilibrium structures, the vibrational frequencies and interaction energies. The interaction energies of the dimers were also calculated at G2MP2 level. Two stable structures are found as the minima. Dimer I(H···F)is a five-membered cyclic hydrogen bonded structure and is more stable than the Dimer II(H···O). The blue-shifted N-H···F hydrogen bond is confirmed with standard and CP-corrected calculations by the MP2 and DFT methods in conjunction with different basis sets. The results obtained at MP2 in conjunction with different basis sets show there is a red-shifted hydrogen bond (Ar-H···O) in the Dimer II(H···O). The topological and electronic properties, the origin of red- and blue-shifted hydrogen bonds were investigated at MP2/6-311++G(2d,2p) with CP corrected calculations. From the NBO analysis, the reasonable explanations for the red- and blue-shifted hydrogen bonds were proposed.  相似文献   

6.
An extensive computational study on the conformations of gaseous dipeptide glycinearginine, GlyArg, has been performed. A large number of trail structures were generated by systematically sampling the potential energy surface (PES) of GlyArg. The trial structures were successively optimized with the methods of PM3, HF/3-21G*, BHandHLYP/6-31G*, and BHandHLYP/6-311++G** in order to reliably find the low energy conformations. The conformational energies were finally determined with the methods of BHandHLYP, camB3LYP, B97D, and MP2 using the basis set of 6-311++G(3df,3pd). The results establish firmly that gaseous GlyArg exists primarily in its canonical form, in sharp contrast with ArgGly that adopts the zwitterionic form. Important data such as the rotational constants, dipole moments, vertical ionization energies, temperature distributions and IR spectra of the low energy conformers are represented for the understanding of the future experiments. Moreover, considering the global minima of all amino acids and many dipeptides, combined with the hydrophobicities of amino acids, a model predicting whether the global minimum configuration of a dipeptide is canonical or zwitterionic is developed.  相似文献   

7.
This work compares the performance of theoretical methods and basis sets on the molecular structure, atomisation and ionisation energies, electron affinity, and vibrational spectrum of silylene. Silylene, its cation and anion have been studied in 1 A 1, 2 A 1 and 2 B 1 states, respectively, in the gas phase and C2v symmetry. The methods considered are second-order Møller-Plesset perturbation theory (MP2), the density functional theory (DFT), Gaussian-2 (G2) and complete basis set methods (CBS-4M and CBS-Q). The basis sets used are 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) and 6-311++G(d,p). The functional used for the DFT method is B3LYP. Silylene and its cation and anion have been optimised using the MP2 and DFT methods and the named basis sets. Single-point energy calculations (G2, CBS-4M and CBS-Q) were performed using MP2/6-311++G(d,p) structures and these energies have been used to calculate atomisation energy, ionisation energy and adiabatic electron affinity. Frequency calculations were also done and the raw vibrational frequencies were assigned. It is interesting to note the close similarity between the predicted parameters and some of the available literature values. The results obtained are consistent and converge with different basis sets with improved size and quality. However, the parameters obtained are very much method dependent.  相似文献   

8.
The influence of various small- and medium-size basis sets used in Hartree-Fock (HF) and density functional theory (DFT)/B3LYP calculations on results of quantum theory of atoms in molecules based (QTAIM-based) analysis of bond parameters is investigated for several single, double, and triple covalent bonds. It is shown that, in general, HF and DFT/B3LYP methods give very similar QTAIM results with respect to the basis set. The smallest 6-31G basis set and DZ-quality basis sets of Dunning type lead to poor results in comparison to those obtained by the most reliable aug-cc-pVTZ. On the contrary, 6-311++G(2df,2pd) and in a somewhat lesser extent 6-311++G(3df,3pd) basis sets give satisfactory values of QTAIM parameters. It is also demonstrated that QTAIM calculations may be sensitive for the method and basis set in the case of multiple and more polarized bonds.  相似文献   

9.
运用B3LYP和MP2方法在6-311++G(d,p)基组水平上, 对H2CO-XY(XY=F2、Cl2、Br2、ClF、BrF、BrCl)卤键体系进行构型全优化, 得到了O…X—Y型卤键复合物. 结果表明, MP2/6-311++G(d,p)计算结果与实验值较吻合. 并在MP2水平下计算了分子间的相互作用能, 用完全均衡校正CP(counterpoise procedure)方法对基函数重叠误差(BSSE)进行了校正. 利用电子密度拓扑分析方法对卤键复合物的电子密度拓扑性质进行了分析研究.  相似文献   

10.
Direct dynamics simulations at the MP2/6-311++G** level of theory were performed to study C(2)H(5)F --> HF + C(2)H(4) product energy partitioning. The simulation results are compared with experiment and a previous MP2/6-31G* simulation. The current simulation with the larger basis set releases more energy to HF vibration and less to HF + C(2)H(4) relative translation as compared to the previous simulation with the 6-31G* basis set. The HF rotation and vibration energy distributions determined from the current simulation are in overall very good agreement with previous experimental studies of C(2)H(5)F dissociation by chemical activation and IRMPA. A comparison of the simulations with experiments suggests there may be important mass effects for energy partitioning in HX elimination from haloalkanes. The transition state (TS) structures and energies calculated with MP2 and the 6-31G* and 6-311++G** basis sets are compared with those calculated using CCD, CCSD, CCSD(T), and the 6-311++G** basis set.  相似文献   

11.
The intermolecular interaction energy of the model system of the water-crownophane complex was analyzed. The water molecule has four hydrogen bonds, with the two hydrogen-donating phenolic hydroxy groups and two hydrogen-accepting oxygen atoms of the poly-oxyethylene chain of the crownophane in the complex. The MP2/6-311G(2d,2p) level calculations of the model system of the complex (hydrogen donating unit + hydrogen accepting unit + water) indicate that the binding energy of the water is 21.85 kcal/mol and that the hydrogen bond cooperativity increases the binding energy as much as 3.67 kcal/mol. The calculated interaction energies depend on the basis set, while the basis set dependence of the cooperative increment is negligible. Most of the cooperative increment is covered by the HF level calculation, which suggests that the major source of the hydrogen bond cooperativity in this system has its origin in induction. The BLYP/6-311G** and PW91/6-311G** level interaction energies of the model system are close to the MP2/6-311G** interaction energies, which suggests that the DFT calculations with these functionals are useful methods to evaluated the interactions of hydrogen bonded systems.  相似文献   

12.
The S–H and C–S bond dissociation energies for simple alkylthiols and dialkylsulphides, along with the S–S bond dissociation energy for dimethyl disulphide, compounds which have been used in the metal–organic chemical vapour deposition (MOCVD) growth of wide band gap II–VI (12–16) Zn- and Cd-based compound semiconductors, have been computed using the ab initio (ROHF and MP2) and density functional theory (DFT) methods (BHandH, BHandHLYP, B3LYP, B3P86, B3PW91, BLYP and BP86) with the 6-311+G(2d,p) basis set along with high accuracy complete basis set, CBS-4 and CBS-Q energy computations. The computed energies are compared with experimental results and the suitability of the DFT methods, for the computational study of these systems, is discussed.  相似文献   

13.
乙烯、乙炔与双卤分子间π型卤键的电子密度拓扑研究   总被引:1,自引:0,他引:1  
运用DFT和MP2(full)在6-311++G(d, p)和aug-cc-pvdz基组水平上, 对一系列简单的分子间π型卤键体系C2H4(C2H2)-XY(XY= F2、Cl2、Br2、ClF、BrF、BrCl) 进行构型全优化, 得到了T型卤键复合物. 结果表明MP2(full)/ 6-311++G(d, p)计算结果与实验结果较吻合. 并在MP2水平上计算了分子间的相互作用能, 用标准Counterpoise procedure (CP)方法对基函数迭加误差(BSSE)进行了校正. 利用电子密度拓扑分析方法对卤键复合物的拓扑性质进行了分析研究.  相似文献   

14.
本文就SiH4与HX形成的二氢键复合物的结构特征及本质进行了探讨。在MP2/6-311++G(3d,3p)水平优化、频率验证得到复合物的分子结构,通过分子间距离及电子密度等值线图,我们确认SiH4与卤化氢已形成了二氢键复合物。MP2/6-311++G(3d,3p)水平下进行BSSE校正后的结合能为2.703-4.439 KJ/mol。用对称匹配微绕理论(SAPT)对结合能进行分解,分解结果显示,SiH4匟X(X=F,Cl,Br,I)二氢键复合物中静电能对总吸引能的贡献小于28%,并且相对稳定,这就是说SiH4匟X二氢键复合物的本质并非静电作用,而是静电能、诱导能、色散能、交换能对总结合能的贡献都非常重要。  相似文献   

15.
用量子化学B3LYP方法在6-311G(d, p)水平上优化了吡咯-HCN氢键复合物,通过振动频率分析确定了两个吡咯-HCN体系稳定构型.为了得到更加精确的氢键作用能,采用相关一致基组aug-cc-pVDZ以及Boys 和Bernardi的CP(counterpoise)校正方法消除基组重叠误差后得到C-H…π和N-H…N型复合物的氢键相互作用能.为了确定B3LYP方法计算的相互作用能的可靠性,在MP2/aug-cc-pVDZ水平计算了复合物的氢键相互作用能,结果分别为-25.10和-19.30 kJ·mol-1.采用自然键轨道(NBO)分析考察了吡咯与HCN分子间轨道相互作用.以自洽场理论(SCRF)中的Onsager模型研究了不同极性溶剂对吡咯-氰化氢体系N-H…N型氢键几何构型,频率位移,电荷分布以及相对能量的影响.研究发现,当溶液的介电常数在1.5~30.0范围时,溶液作用十分显著,而当介电常数超过30.0以后,溶液作用已经达到了极限.  相似文献   

16.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

17.
Density functional theory with the combined Becke3-LYP exchange-correlation energy functional [DFT(B3-LYP) method] using the 6-31G(d, p) basis set is applied to predict molecular parameters (geometries, rotational constants, dipole moments) and vibrational IR spectra (harmonic wavenumbers, absolute intensities) of six tautomers of the isocytosine molecule. The results are compared with the corresponding data calculated at the conventional ab initio Hartree-Fock (HF) level using the same basis set and with available experimental data. Calculations show that (a) three amino tautomers are slightly nonplanar species with, evidently, a distorted amino group, (b) the DFT (B3-LYP)/6-31G(d, p) method predicts better molecular parameters, than do the HF calculations, and (c) the DFT(B3-LYP)-calculated vibrational IR spectra of isocytosine agree well with the available recorded IR spectra, and they show marked improvement over the IR spectra predicted at the HF/6-31G(d, p) level. Tautomeric stabilities of isocytosine are discussed on the basis of computed electronic energies by the DFT(B3-LYP) and ab initio approaches [including the MP2 and MP4(SDQ) calculations of electronic energies] and predicted zero-point vibrational energies by DFT(B3-LYP) and HF methods. This relative energies at 0 K of the tautomeric forms of isocytosine predicted by both conventional ab initio and DFT(B3-LYP) methods correlate well with the experimental data, showing the predominance of the aminohydroxy tautomer of isocytosine for an isolated molecule. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
The molecular structure and conformational stability of CH2CHCH2X (X=F, Cl and Br) molecules were studied using ab initio and density functional theory (DFT) methods. The molecular geometries of 3-fluoropropene were optimized employing BLYP and B3LYP levels of theory of DFT method implementing 6-311+G(d,p) basis set. The MP2/6-31G*, BLYP and B3LYP levels of theory of ab initio and DFT methods were used to optimize the 3-chloropropene and 3-bromopropene molecules. The structural and physical parameters of the molecules are discussed with the available experimental values. The rotational potential energy surface of the above molecules were obtained at MP2/6-31G* and B3LYP/6-311+G(d,p) levels of theory. The Fourier decomposition of the rotational potentials were analyzed. The HF/6-31G* and MP2/6-31G* levels of theory have predicted the cis conformer as the minimum energy structure for 3-fluoropropene, which is in agreement with the experimental values, whereas the BLYP/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory reverses the order of conformation. The ΔE values calculated for 3-chloropropene at MP2/6-31G*, BLYP/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory show that the gauche form is more stable than the cis form, which is in agreement with the experimental value. The same levels of theory have also predicted that the gauche form is stable than cis for 3-bromopropene molecule. The maximum hardness principle has been able to predict the stable conformer of 3-fluoropropene at HF/6-31G* level of theory, but the same level of theory reverses the conformational stability of 3-chloropropene and 3-bromopropene molecules and MP2/6-31G* level of theory predicted the stable conformer correctly.  相似文献   

19.
Ab initio molecular orbital and DFT calculations have been carried out for three most stable dimers of parent nitrosamine (NA) in order to elucidate the structures and energetics of the dimers. The structures were optimized using HF, B3LYP, and MP2 methods with 6‐311+G(d,p) and 6‐311++G(2d,2p) basis sets. At the optimized geometries obtained at MP2/6‐311++G(2d,2p) level of theory, the energies were evaluated at QCISD/aug‐cc‐pVDZ and CCSD/aug‐cc‐pVDZ levels. The most stable dimer has two N? H···O?N hydrogen bonds and the least stable dimer has two N? H···N?O hydrogen bonds. The natural bond orbital analysis showed that the lpO(N) → BD*(N? N) and lpO(N) → BD*(N? Hb) interactions play a decisive role in the stabilization of the NH···O(N) hydrogen bonds in dimers. The atoms in molecules results reveal that the intermolecular N? H···O(N) H‐bonds in dimers have electrostatic character. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

20.
Six stationary points of alaninamide have been located on the potential surface energy (PES) at the B3LYP/6‐311++G(2d,2p) level of theory both in the gas phase and in aqueous solution. In the aqueous solution, to take the water solvent effect into account, the polarizable continuum model (PCM) method has been used. Accurate geometric structures and their relative stabilities have been investigated. The results show that the intramolecular hydrogen bond plays a very important role in stabilizing the global minimum of the alaninamide. Moreover, the consistent result in relative energy using high‐level computations, including the MP2 and MP3 methods with the same basis set [6‐311++G(2d,2p)], indicates that the B3LYP/6‐311++G(d,p) level may be applied to the analogue system. More importantly, the optical rotation of the optimized conformers (both in the gas phase and in aqueous solution) of alaninamide have been calculated using the density functional theory (DFT) and Hartree–Fock (HF) method at various basis sets (6‐31+G*, 6‐311++G(d,p), 6‐311++G(2d,2p) and aug‐cc‐pvdz). The results show that the selection of the computation method and the basis set in calculation has great influence on the results of the optical rotations. The reliability of the HF method is less than that of DFT, and selecting the basis set of 6‐311++G(2d,2p) and aug‐cc‐pvDZ produces relative reliable results. Analysis of the computational results of the structure parameters and the optical rotations yields the conclusion that just the helixes in molecules caused the chiral molecules to be optical active. The Boltzmann equilibrium distributions for the six conformers (both in the gas phase and in the aqueous solution) are also carried out. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号