首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrophobic mismatch between the hydrophobic length of membrane proteins and hydrophobic thickness of membranes is a crucial factor in controlling protein function and assembly. We combined fluorescence with circular dichroism(CD) and attenuated total reflection infrared(ATR-IR) spectroscopic methods to investigate the behaviors of the peptide and lipids under hydrophobic mismatch using a model peptide from the fourth transmembrane domain of natural resistance-associated macrophage protein 1(Nramp1), the phosphatidylcholines(PCs) and phosphatidylglycerols(PGs) with different lengths of acyl chains(14:0, 16:0 and 18:0). In all PG lipid membranes, the peptide forms stable a-helix structure, and the helix axis is parallel to lipid chains. The helical span and orientation hardly change in varying thickness of PG membranes, while the lipid chains can deform to accommodate to the hydrophobic surface of embedded peptide. By comparison, the helical structures of the model peptide in PC lipid membranes are less stable. Upon incorporation with PC lipid membranes, the peptide can deform itself to accommodate to the hydrophobic thickness of lipid membranes in response to hydrophobic mismatch. In addition, hydrophobic mismatch can increase the aggregation propensity of the peptide in both PC and PG lipid membranes and the peptide in PC membranes has more aggregation tendency than that in PG membranes.  相似文献   

2.
In stoichiometric amounts, the spin label N-tempoyl-(p-chloromercuribenzamide) reacts rapidly with one cysteine residue in membrane-bound bovine rhodopsin. This residue is distinct from the two reactive cysteines previously used as attachment sites for spectroscopic labels, and is on the external surface of the protein near the cytoplasmic membrane/aqueous interface. The spin-labeled side chain has revealed a light-induced conformational change in membrane-bound rhodopsin that is apparently not associated with protein aggregation. The changes are reversible upon the addition of 11-cis retinal, and the magnitude of the change is dependent on the identity of the phospholipid in the surrounding bilayer. Alteration of lipid composition has a much larger effect on bleached rhodopsin than rhodopsin itself, indicating that the former is more readily deformable in response to changes in bilayer properties. This is consistent with the loss of 11-cis retinal binding energy in opsin compared to rhodopsin. These results provide direct structural evidence that the conformation of a membrane protein can be modulated by the lipid properties.  相似文献   

3.
Galbraith TP  Wallace BA 《Faraday discussions》1998,(111):159-64; discussion 225-46
Gramicidin is an excellent model system for studying the passage of ions through biological membranes. The conformation of gramicidin is well defined in many different solvent and lipid systems, as are its conductance and spectroscopic properties. It is a polymorphic molecule that can adopt two different types of structure, the double helical "pore" and the helical dimer "channel". This study investigated the influence of the acyl chain length of membrane phospholipids on the conformations adopted by gramicidin. We used circular dichroism spectroscopy to examine the conformational equilibrium between the pore and channel forms in small unilamellar vesicles of phosphatidylcholine with acyl chain lengths of 18, 20 and 22 carbons. Our results show that in C18 and C20 lipids almost all the gramicidin is in the channel form, while in the longer C22 lipids the equilibrium shifts in favour of pore conformations, such that they form up to 43% of the total population. This change is attributed to the ability of the double helical conformation to tolerate more hydrophobic mismatch than the helical dimer, perhaps due to the greater number of stabilising intermolecular hydrogen bonds.  相似文献   

4.
The physico‐chemical properties as well as the conformation of the cytoplasmic surface of the 7‐helix retinal proteins bacteriorhodopsin (bR) and visual rhodopsin change upon light activation. A recent study found evidence for a transient softening of bR in its key intermediate M [Pieper et al. (2008) Phys. Rev. Lett. 100 , 228103] as a direct proof for the functional significance of protein flexibility. In this report we compare environmental and flexibility changes at the cytoplasmic surface of light‐activated bR and rhodopsin detected by time‐resolved fluorescence spectroscopy. The changes in fluorescence of covalently bound fluorescent probes and protein real‐time dynamics were investigated. We found that in fluorescently labeled bR and rhodopsin the intensity of fluorescein and Atto647 increased upon formation of the key intermediates M and metarhodopsin‐II, respectively, suggesting different surface properties compared to the dark state. Furthermore, time‐resolved fluorescence anisotropy experiments reveal an increase in steric restriction of loop flexibility because of changes in the surrounding protein environment in both the M‐intermediate as well as the active metarhodopsin‐II state. The kinetics of the fluorescence changes at the rhodopsin surface uncover multiple transitions, suggesting metarhodopsin‐II substates with different surface properties. Proton uptake from the aqueous bulk phase correlates with the first transition, while late proton release seems to parallel the second transition. The last transition between states of different surface properties correlates with metarhodopsin‐II decay.  相似文献   

5.
We report on the oligosaccharide recognition through noncovalent interactions in water based on a unique supramolecular homoduplex-to-heteroduplex transformation of the oligoresorcinol nonamer as a fully artificial receptor. The oligoresorcinol forms a double helix in water, which unravels and entwines upon complexation with specific oligosaccharides with a particular chain length and glucosidic linkage pattern, thus generating the heteroduplex with an excess one-handed helical conformation that can be readily monitored and further quantified by absorption, circular dichroism, and NMR spectroscopies.  相似文献   

6.
Opsin is the unstable apo‐protein of the light‐activated G protein‐coupled receptor rhodopsin. We investigated the stability of bovine opsin, solubilized in 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC)/detergent bicelles, against urea‐induced unfolding. A single irreversible protein unfolding transition was observed from changes in intrinsic tryptophan fluorescence and far‐UV circular dichroism. This unfolding transition correlated with loss of protein activity. Changes in tertiary structure, as indicated by fluorescence measurements, were concomitant with an approximate 50% reduction in α‐helical content of opsin, indicating that global unfolding had been induced by urea. The urea concentration at the midpoint of unfolding was dependent on the lipid/detergent environment, occurring at approximately 1.2 m urea in DMPC/1,2‐dihexanoyl‐sn‐glycero‐3‐phosphocholine bicelles, while being significantly stabilized to approximately 3.5 m urea in DMPC/3‐[(cholamidopropyl)dimethylammonio]‐1‐propanesulfonate bicelles. These findings demonstrate that interactions with the surrounding lipids and detergent are highly influential in the unfolding of membrane protein structure. The urea/bicelle system offers the possibility for a more detailed understanding of the structural changes that take place upon irreversible unfolding of opsin.  相似文献   

7.
Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pK(a) for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6omega3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H(3)O(+), in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H(0)) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the approximately zero H(0) from PS and the negative H(0) due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.  相似文献   

8.
Decay of metarhodopsin II was accelerated by hydroxylamine treatment or dark incubation of metarhodopsin II at 30 degrees C. The products thus obtained after decay of metarhodopsin II induced GTPase activity on transducin as well as metarhodopsin II suggesting that rhodopsin could activate transducin after the decay of metarhodopsin II intermediate. After urea-treated bovine rod outer segment membrane was completely bleached, rhodopsin in the membrane was regenerated by the addition of 11-cis retinal at various temperatures between 0 and 37 degrees C. The capacity to induce GTPase activity on transducin and phosphate incorporating capacity catalyzed by rhodopsin kinase were measured on such rhodopsins. The results showed that: (1) Regeneration of alpha band of rhodopsin was complete regardless of regeneration temperature; (2) When regenerated at temperatures below 10 degrees C, rhodopsins induced a GTPase activity on transducin in the dark even after treatment with hydroxylamine, whereas rhodopsins after regeneration at temperatures above 13 degrees C did not; (3) When regenerated at 0 degrees C, rhodopsin was phosphorylated if incubated with rhodopsin kinase and ATP in the dark, whereas the spectrally regenerated rhodopsin at 30 degrees C was not. The complete quenching of functions of photoactivated rhodopsin was achieved by recombination with 11-cis retinal at temperatures above 13 degrees C but not below 10 degrees C suggesting the existence of a low temperature intermediate upon regeneration.  相似文献   

9.
The cytoplasmic surface of G protein‐coupled receptors plays a central role for activation and deactivation of the receptor. To understand the molecular mechanisms which underlie these processes, we determined the surface charge density and its changes upon activation directly at the cytoplasmic surface of bovine rhodopsin and correlated these changes with key events in receptor activation. The surface charge density was calculated from the ionic strength dependence of the apparent pKa of the surface‐bound pH‐indicator dye fluorescein according to the Gouy‐Chapman theory. The surface charge density at pH 6.5 changes by 0.8 ± 0.2 elementary charge/1000 Å2 in rod outer segment disk membranes and by 0.4 ± 0.2 elementary charge/1000 Å2 in rhodopsin/dodecylmaltoside micelles upon formation of the active metarhodopsin‐II state. By comparison of these surface charge density values determined with and without the native lipid environment, we calculated the charge change to about 1 elementary charge/cytoplasmic rhodopsin surface. The more positive surface charge density in metarhodopsin‐II decreases back to the dark state level of σ = ?2.0 ± 0.2 elementary charges/1000 Å2 in the opsin state, providing further evidence that the cytoplasmic surface properties after metarhodopsin‐II decay resemble almost those of the dark state.  相似文献   

10.
Abstract— The visual pigment rhodopsin is the major membrane protein in the rod photoreceptor membrane. Rhodopsin's function is to transduce the light induced isomerization (ll-cis to all-trans) of its internally located retinylidene chromophore into transient expression of signal sites at the surface of the protein. Fourier transform infrared (FTIR) difference spectroscopy has been used to study all of the steps in the photobleaching sequence of rhodopsin. Early protein alterations involving the peptide backbone and aspartic and/or glutamic carboxyl groups were detected which increase upon lumirhodopsin formation and spread to water exposed carboxyl groups by metarhodopsin II. The intensified and frequency shifted hydrogen-out-of-plane vibrations of the chromophore that are present in bathorhodopsin are absent in lumirhodopsin. This indicates that by lumirhodopsin, the chromophore has relaxed relative to its more strained all-frans form in bathorhodopsin. Finally, the transition to metarhodopsin II is found to involve perturbation of the acyl tail region of unsaturated phospholipid molecules possibly in response to small changes in the shape of the rhodopsin.  相似文献   

11.
Four 20 ns molecular dynamic simulations of rhodopsin embedded in different one-component lipid bilayers have been carried out to ascertain the importance of membrane lipids on the protein structure. Specifically, dimyristoyl phosphatidylcholine (DMPC), dipalmitoyl phosphatidylcholine (DPPC), palmitoyl oleoyl phosphatidylcholine (POPC), and palmitoyl linoleyl phosphatidylcholine (PLPC) lipid bilayers have been considered for the present work. The results reported here provide information on the hydrophobic matching between the protein and the bilayer and about the differential effects of the protein on the thickness of the different membranes. Furthermore, a careful analysis of the individual protein-lipid interactions permits the identification of residues that exhibit permanent interactions with atoms of the lipid environment that may putatively act as hooks of the protein to the membrane. The analysis of the trajectories also provides information about the effect of the bilayer on the protein structure, including secondary structural elements, salt bridges, and rigid-body motions.  相似文献   

12.
The influence of the lipid environment on the function of membrane proteins is increasingly recognized as crucial. Nevertheless, the molecular mechanisms underlying protein-lipid interactions remain obscure. Membrane lipid composition has a regulatory effect on membrane protein activity, and for a number of membrane proteins a clear correlation was found between protein activity and properties of the membrane bilayer such as fluidity. Membrane thickness is an important property of a lipid bilayer. It is expected that hydrophobic thickness match the hydrophobic thickness of transmembrane segments of integral membrane proteins. Any mismatch between the hydrophobic thicknesses of the lipid bilayer and the protein would lead to some modification in either the structure of the protein or the structure of the bilayer, or both. Consequent rearrangements may result in changes in protein activity. Here we review the behavior of several transmembrane proteins whose activity is altered by hydrophobic core thickness.  相似文献   

13.
Abstract— This report describes spectral changes associated with the transformation of metarhodopsin I to metarhodopsin II following light excitation of isorhodopsin and rhodopsin. Irradiated isorhodopsin gives rise to an equilibrium mixture of metarhodopsin I and metarhodopsin II which at 2°C and pH 6.8 favors the former. Isorhodopsin and rhodopsin are converted to metarhodopsin II via metarhodopsin I at very similar rates and activation parameters for the conversions are essentially identical. It is concluded that the initial cis to trans isomerization erases all differences in the two pigments.  相似文献   

14.
The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl‐bearing side‐chain motion that is largely independent of membrane mimetic. The methyl‐bearing side chains of both proteins are, on average, more dynamic in the ps–ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane‐protein functions, including ligand binding, allostery, and signaling.  相似文献   

15.
Some new information on the conformation of xanthan in aqueous solutions is given. A single helical chain conformation characterizes xanthan in the native state. When heated over the critical temperature for conformational change ( helixŕ coil), the xanthan is denatured and renatured when it is cooled down in a localy double helical structure. A galactomannan was also characterized and its persistence length was obtained (Lp ≈︁ 90A°). Then mixtures of the galactomannan and xanthan were investigated to propose a mechanism for the specific gelation. From the results of microcalorimetry and circular dichroism, it is concluded that a complex is formed between one disordered xanthan chain and one galactomannan chain and that an ordered conformation is stabilized at temperatures lower than 25°C when the galactomannan has a M/G ratio of ≈︁ 3. This temperature corresponds to the sol-gel transition. This is the first time that a structure of the crosslink points is demonstrated.  相似文献   

16.
《Chemical physics》1986,102(3):395-405
An extended formulation of the circular dichroism of helical chromophore aggregates is given by means of the self-consistent non-linear response theory. In this formulation the helix circular dichroism is expressed in closed form in terms of the chromophore's polarizability and hyperpolarizability and in terms of the retarded helical-lattice sum of interchromophoric dipole-dipole interactions. The effects of interchromophoric dynamic interactions upon the helix circular dichroism are then absorbed self-consistently into the polarizability and hyperpolarizability band shape matrices of the perturbed chromophore. The utility of this formulation is shown by a sample calculation of the polarizability and first-hyperpolarizability contribution effects upon the circular dichroism band shape of an oriented helix modelling the B-form conformation of polynucleotides.  相似文献   

17.
Abstract—Rhodopsin in retinal rod outer segment disc membranes, was proteolyzed by treatment with papain. This treatment left three fragments of apparent mol wt of 26,000, 19,000 and 10,000 in the membrane. The circular dichroism (CD) of solubilized, proteolyzed rhodopsin, in both the UV and visible spectral regions, was essentially identical to that of native rhodopsin. This indicates that the retinal binding site configuration is essentially unchanged by proteolysis and that the proteolyzed form of rhodopsin retained the helical content of native rhodopsin. Far UV CD measurements on the fragments indicate that the secondary structural features of the proteolyzed complex were largely maintained when the complex was dissociated. This finding suggests that the proteolytic fragments represent independently stabilized domains within rhodopsin. Measurements of the dependence of the activation free energy of the unfolding of opsin (as determined by the rate of loss of regenerability of opsin) and the meta I to meta II transition on the level of phospholipid associated with opsin and rhodopsin. respectively, have allowed for a determination of the mode of stabilization of these proteins by phospholipid. This dependence has been shown to have a linear form for opsin and rhodopsin. Hence, it appears that the stabilization of the tertiary structure of both solubilized opsin and rhodopsin is attributable to the sum of their interactions with individual phospholipid molecules, interacting with the protein in a non-cooperative manner.  相似文献   

18.
Abstract

The synthesis of L-tryptophan attached to the C3 group of a β-cyclodextrin through amide linkages with ethylenediamine or propylenediamine is reported. Circular dichroism and fluorescence investigations were carried out showing great differences between the two derivatives. The derivative containing the propylenediamine chain shows clear self-inclusion and exhibits spectral variations upon guest inclusion detected both by circular dichroism or by fluorescence. The difference in conformation of the two derivatives could be explained on the basis of the chain length.  相似文献   

19.
The diffusion coefficients (D) of poly-L-glutamic acid (PLG) at various pHs are investigated by the laser-induced transient-grating method with a new photoreactive probe molecule. The pH dependence of D is compared with that of the helical content of PLG measured by circular dichroism. It is found that the pH dependences of both quantities are very similar. Since the frictions of the translational diffusion of charged and protonated carboxyl groups are found to be similar each other, it is concluded that the conformation of the main polymer chain is the main factor in determining the diffusion process; in other words, the alpha-helix conformation makes the molecular diffusion faster. This result indicates that the conformational change of a protein can be detected by monitoring the diffusion coefficient.  相似文献   

20.
Structure, Stability, and Activity of Adsorbed Enzymes   总被引:1,自引:0,他引:1  
A proteolytic enzyme, α-chymotrypsin, and a lipolytic enzyme, cutinase, were adsorbed from aqueous solution onto a hydrophobic Teflon surface and a hydrophilic silica surface. We investigated the influence of adsorption on the structure, the structure thermal stability and the activity of these enzymes. Probing the protein structure by circular dichroism spectroscopy indicates that Teflon promotes the formation of helical structure in α-chymotrypsin, but the reverse effect is found with cutinase. The perturbed protein structures on Teflon are remarkably stable, showing no heat-induced structural transitions up to 100°C, as monitored by differential scanning calorimetry. Contact with the hydrophilic silica surface leads to a loss in the helix content of both proteins. Differential scanning calorimetry points to a heterogeneous population of adsorbed protein molecules with respect to their conformational states. The fraction of the native-like conformation in the adsorbed layer increases with increasing coverage of the silica surface by the proteins. The specific enzymatic activity in the adsorbed state qualitatively correlates with the fraction of proteins in the native-like conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号