首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical investigation of the sensitivity of an optical liquid sensor, based on photonic crystal waveguide, is carried out. The sensing principle is based on the variation of the effective index of the waveguide induced by analyte refractive index change. The sensor modelling is carried out by using the 3D finite element method. The influence of geometrical parameters on the sensor sensitivity has been investigated. The results show that the sensitivity can be optimized by an appropriate choice of the geometrical parameters and a sensitivity superior to 20 has been achieved, near the cut-off in the slow light region, which is several times higher than that can be achieved with conventional waveguides.  相似文献   

2.
It is shown that Fizeau interferometry provides an accurate optical method to measure the refractive index and wedge angle of transparent plates used as optical components in different experiments. A near IR external cavity diode laser having spectral resolution up to 10−7 has been employed to measure the refractive index of the test plates by introducing amplitude modulation technique in the detection system of our phase shifting Fizeau interferometry. Detection of spatial fringes has been performed to find out the wedge angles of the plates by using a He–Ne laser along with the CCD-image sensor.  相似文献   

3.
A highly-sensitive integrated optical biosensor based on two cascaded micro-rings resonator (MRR) is investigated theoretically and experimentally. The free spectral ranges (FSRs) of two cascaded micro-rings are designed to be slightly different in order to generate Vernier effect. A preliminary investigation of our sensor with a Q factor of 2 × 104 using different ethanol concentrations shows that the Vernier effect can improve the sensitivity to 1300 nm per refractive index unit (RIU), compared to 62 nm/RIU for a single ring sensor. The sensor also has a large measurement range of refractive index change up to 1.15 × 10− 2 RIU. It can be useful for low-cost and highly-sensitive optical biosensor system.  相似文献   

4.
In this paper, an optical fiber sensor based on multiple total internal reflections (MTIRs) in heterodyne interferometry is proposed. With the optical fiber sensor the phase shift difference due to the multiple total internal reflections effect between the p- and s-polarizations is measured by using heterodyne interferometry. Substituting the phase shift difference into Fresnel's equations, the refractive index for the tested medium can be calculated. The resolution of the sensor can reach 1.6×10?6 refractive index unit (RIU). The optical fiber sensor could be valuable for chemical, biological and biochemical sensing. It has some merits, such as, high resolution and stability, high sensitivity, high resolution and real-time measurement.  相似文献   

5.
In this paper, we studied the nonlinear optical properties of a negative donor center (D) in a disk-like quantum dot (QD) with a Gaussian confining potential. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A detailed investigation of the linear, third-order nonlinear, total optical absorptions and refractive index changes has been carried out for the D QD and the D0 QD. The linear, third-order nonlinear, total optical absorptions and refractive indices have been examined for a double-electron QD with and without impurity. Our results show that the optical absorption coefficients and refractive indices in a disk-like QD are much larger than their values for quantum wells and spherical QDs and the nonlinear optical properties of QDs are strongly affected not only with the confinement barrier height, dot radius, the number of electrons but also the electron-impurity interaction.  相似文献   

6.
In this paper, we have analyzed the influences of non-linear refractive index on the four-wave mixing (FWM) characteristics in semiconductor optical amplifiers (SOAs). It has been shown that the generated FWM signal characteristics can be modified due to the variation of non-linear refractive index of the SOA's medium. The wave propagation in the SOA has been modeled using the nonlinear propagation equation taking into account gain spectrum dynamics, gain saturation, which depends on carrier depletion, carrier heating, spectral hole-burning, group velocity dispersion, self-phase modulation and two photon absorption. Simulation of optical wave evolution in the SOA has been carried out using the finite-difference beam propagation method (FD-BPM) both in time and spectral domains. Our simulation results confirm that higher FWM conversion efficiency and lower time bandwidth product are achieved for higher absolute values of non-linear refractive index. Moreover, non-linear refractive index is more efficacious for high power propagated waves in SOAs. Finally, we have studied the modification of waveguide refractive index due to the propagation of optical pulses. We have also shown that when |n2|=1 cm2/TW, refractive index variation is in the order of 10?4 to 10?7 for high and low power input pulses, respectively.  相似文献   

7.
提出了一种基于表面等离子体共振(SPR)效应增强的光子晶体光纤折射率传感器。该传感器结构通过光纤熔接机拼接光子晶体光纤(PCF),在光子晶体光纤中间引入一个空气孔形成PCF-空气孔-PCF的光纤传感结构,随后使用磁控溅射镀膜工艺在其表面沉积一层薄金膜制备而成。实验探究了折射率及温度对传感器的响应。结果表明,在1.333~1.389的折射率范围内,所提出的传感器的平均折射率灵敏度为2 142.52 nm,且测量线性度为0.981,品质因子约13.10。实验结果表明该传感器对温度不敏感。相比于无空气孔的PCF传感结构,引入的空气孔增强了SPR效应,使得传感器拥有良好的共振峰深度。得益于上述优势,该类型传感器有望在生物医学、环境监测等领域得到应用。  相似文献   

8.
A novel waveguide ring resonator optical sensor with two resonant wavelength channels is proposed for a refractive index measurement of a test sample placed on the sensor substrate and its performance characteristics are investigated analytically and numerically. The waveguide device consists of a ring resonator, a split-ring-shaped loop waveguide, and a vertical input/output grating coupler, in which the loop waveguide acts as an additional resonator and provides another output wavelength channel of the sensor. The differential detection between the two wavelength channels enables the highly sensitive detection with temperature compensation. A numerical simulation based on a finite difference time domain (FDTD) method shows that a precise index change detection with a resolution of 10−6 can be achieved using of the proposed device.  相似文献   

9.
Refractive index sensor using microfiber-based Mach-Zehnder interferometer   总被引:4,自引:0,他引:4  
Wo J  Wang G  Cui Y  Sun Q  Liang R  Shum PP  Liu D 《Optics letters》2012,37(1):67-69
A simple and robust refractive index (RI) sensor based on a Mach-Zehnder interferometer has been demonstrated. A section of optical microfiber drawn from silica fiber is employed as the sensing arm. Because of the evanescent field, a slight change of the ambient RI will lead to the variation of the microfiber propagation constant, which will further change the optical length. In order to compensate the variation of the optical length difference, a tunable optical delay line (ODL) is inserted into the other arm. By measuring the delay of the ODL, the ambient RI can be simply demodulated. A high RI sensitivity of about 7159 μm/refractive index unit is achieved at microfiber diameter of 2.0 μm.  相似文献   

10.
In this study an alternative method based on surface plasmon resonance is proposed for in-situ monitoring of variation in the refractive index of a test sample. A wavelength-modulated light source and an unequal-path-length optical configuration heterodyne interferometer are used to detect the phase difference change, which can then be used to estimate the change in the refractive index of a test sample. The experimental results demonstrate a phase stability of 0.02°. The resolution power of the refractive index is 1.5 × 10− 6 RIU. This method has several advantages over previously used methods such as simple optical setup, easier operation in real time, and low cost.  相似文献   

11.
A high-resolution sensor for measuring the refractive index of liquids using a reflective arrayed-waveguide grating (AWG) is proposed. The refractive index of a liquid placed in the groove of the arrayed region is measured via the shift of the maximum intensity in the imaging plane of the AWG owing to the phase change in the region. The refractive index can be monitored in real time by measuring the power ratio between two output waveguides of the AWG with a narrow-band source. A mathematical model based on Fourier optics and wave optics is established. A fitting formula for the relationship between the power ratio and the refractive index of liquid is derived. The results of the study show that the proposed method can eliminate the effects of instability of the light source and the inner loss of the system and provide a refractive index resolution of 10−7.  相似文献   

12.
We present a new optical sensor based on surface plasmon resonance (SPIt) enhanced lateral optical beam displacements. Compared with the traditional SPIt methods, the new method provides higher sensitivity to the sensor system. Theoretical simulations show that the refractive index (RI) detection sensitivity of the SPR sensor based on the displacement measurement has a strong dependence on the thickness of the metal film. When the optimal thickness of the metal film is selected, the RI resolutlon of the SPIt sensor is predicted to be 2.2 × 10^-7 refractive index units (RIU). Furthermore, it is found that the incidence angle can be used as a parameter to adjust the operating range of the sensor to different refractive index ranges.  相似文献   

13.
The delay of optical signal is determined by the refractive index and length of optical fiber, and temperature would have an intense influence on the index. To establish the relationship between refractive index and temperature, the temperature characteristics of refractive index was analyzed and the thermo-optical coefficient equation was derived according to the polarization of the induced electric dipole moment in SiO2 optical fiber. A measuring system based on optical fiber delay was carried out to measure the index within the temperature range of −30 °C to 70 °C and the experimental result was compared with the theoretical result. The final result shows that the relationship between refractive index and temperature is linear in the temperature range of discussion.  相似文献   

14.
针对分子生物学与环境监测领域高灵敏度特异性检测需求,提出一种基于反射光谱特征辨识的单端反射式光纤折射率传感器模型,并给出了这种基于多模干涉原理的单模光纤-无芯光纤(Single mode fiber-No core fiber, SM-NCF)串接结构传感机理及其理论模型。无芯光纤实质上是一种结构特殊的多模光纤,在实际应用中无芯光纤结构本身作为纤芯,外界环境介质当作包层,构成光波导结构。这与普通多模光纤相比,不需要采用氢氟酸对多模光纤的包层进行化学腐蚀,不会降低光纤的机械性能,也不会破坏芯模传输条件,可以更好的实现对周围环境折射率的传感监测。当无芯光纤所处外界环境折射率发生改变时,其波导结构和包层有效折射率均会发生改变,从而引起传输光信号的纵向传播常数和模场分布也会随之发生改变,最终导致不同波长对应传输光功率的变化。上述效应反映在反射光谱上,即干涉波谷对应的谐振波长、波谷峰值强度以及半波宽度发生相应变化,通过辨识该反射光谱特征就可实现对外界环境折射率的测量。借助光束传播法(BPM),数值模拟得到无芯光纤长度分别为自映像距离和非自映像距离时的SM-NCF内部光场能量分布规律,并制作了无芯光纤长度分别为自映像距离和非自映像距离的SM-NCF光纤折射率传感探头,将作为传感区域的无芯光纤一端与标准单模光纤熔接,采用磁控溅射技术在无芯光纤另一端面镀上金膜,用以提升反射光谱强度。在此基础上,搭建了基于SM-NCF终端反射型的光纤折射率试验系统,并开展了相关实验研究。研究结果表明,当无芯光纤长度是15 mm(自映像距离)时,随着液体折射率从1.331 5依次增大至1.390 2,SM-NCF反射光谱逐渐向长波方向偏移,其反射峰谐振波长对应的折射率灵敏度约为197.57 nm·RIU-1,相关系数为0.93;反射峰值强度也呈现逐渐降低趋势,其折射率灵敏度约为-62.80 dB·RIU-1。当无芯光纤长度是20 mm(非自映像距离)时,随着液体折射率依次增大,SM-NCF反射光谱呈现明显双峰现象,且均逐渐向长波方向偏移,dip2谐振峰波长折射率灵敏度约为133 nm·RIU-1,相关系数为0.96;反射峰值强度也呈现逐渐降低趋势,其折射率灵敏度约为-31.66 dB·RIU-1。对比分析可知,不论是从反射峰谐振波长偏移的角度,还是从反射峰值强度的角度,自映像距离长度对应的 SM-NCF终端反射型光纤传感器均具有较高灵敏度。对于相同折射率液体环境,非自映像距离长度对应的SM-NCF反射光谱半波宽度与自映像距离长度相比,呈现显著变窄趋势。相对于SMS透射型传感结构,当传感区域长度相同时,SM-NCF反射型结构能够实现对光波信号的往返两次调节。这种终端反射型SM-NCF传感器改进了传统透射型折射率传感器不便与待测液体相接触的缺点,具有结构简单、易于制作、抗电磁干扰能力强以及便于远程遥测等优点,能够为后续生化与环保监测领域研究应用提供有益支持。  相似文献   

15.
A novel surface plasmon resonance photonic sensor is proposed using an index-guided microstructured fiber with an analyte channel introduced into the central core. Compared with the previous designs of porous fiber core, variation of the signal amplitude with exterior refractive index is demonstrated to be contrary to that of the sensitivity in the proposed fiber, contributing to optimized detecting accuracy over a large refractive index range of 1.33 to 1.42. By carefully choosing the central channel size, the analyte-filled core can achieve narrower resonance spectral width and higher signal to noise ratio (SNR) than the air-filled core. Sensor responses are also studied in this paper based on two spectral interrogation methods, including monitoring single resonance shift and measuring change in the resonance separation. For both methods, response linearity has been improved considerably through partially filling the core with analyte. The maximal sensitivity reaches 10− 6 refractive index unit (RIU). The linear sensing performance along with the broad measurement range is very promising in the application of the proposed sensor as sensitive refractometer.  相似文献   

16.
A novel refractometric sensor utilizing unique spectral properties of antiresonant-guiding microstructured optical fibers is proposed. The sensor operation is based on the wavelength shift of the transmission spectrum in response to the refractive index change of a sample loaded in the air-holes of the microstructured optical fiber. Refractive index changes on the order of 0.1% can be detected using less than a nanoliter of a sample.  相似文献   

17.
开展了光纤波导中的电磁场传输理论分析,得到了光纤折射率变化对波导中电磁场分布的影响规律,建立了块状融石英材料及光纤光栅在60Co 辐射作用下折射率变化的测量系统,开展了折射率随辐射剂量变化及光纤模场测量实验。结果表明:光纤的折射率随辐射剂量的增加而增大,折射率的变化会引起波导中传输模式的场强分布变化,从而导致光纤的辐射感生波导损耗;在一定的辐射剂量范围(0~2000 Gy)内,光纤仍满足弱导边界条件,能够维持对传输模式的约束能力。  相似文献   

18.
The formation and annealing of defects in ion implanted silicon dioxide layers and in connection with them the refractive index change are of high interest for the production of electronic and integrated optical devices.

Several studies have shown that the ion implantation in fused silica leads to a compaction of the material and in consequence to an increasing of the refractive index.1–6 On the other hand the defect formation in crystalline quartz is connected with a decreasing of the refractive index up to nearly the same value for ion implanted quartz and fused silica layers in the high dose region.1,5 On the base of this effects optical waveguides had been produced by ion implantation in both material.2,7–12 However, the nature of the mechanisms responsible for the defect formation and for the changes of the optical properties are not well understood.

This paper reports on the ion dose and annealing temperature dependence of several defects in connection with the refractive index change.  相似文献   

19.
A method named intensity calculation method (ICM), which is based on beam propagation method (BPM) and image processing, was carried out to reconstruct the extraordinary refractive index profile (RIP) of single-mode planar waveguide in lithium niobate (LiNbO3), which was fabricated by multi-energy megaelectron-volt (MeV) O2+ ion implantation. In addition, it has been proved reasonable that the alternation of extraordinary refractive index induced by ion implantation into LiNbO3 is mainly due to the degradation of polarization and reduction of material physical density. As a result, the possible extraordinary RIP of the double-mode planar waveguide could be reconstructed using BPM according to such a hypothesis and the calculated guiding mode values. The end-fire coupling and m-line arrangements were carried out to obtain the near-field modal patterns and dark-mode spectra of waveguides, respectively.  相似文献   

20.
An investigation of an exciton bound in a parabolic two dimensional quantum dot by a donor impurity has been carried out by using the matrix diagonalization method and the compact density-matrix approach. The linear, third-order nonlinear, total optical absorption coefficients and refractive index changes have been calculated for the s-p, p-d, and d-f transitions. The results show that the parabolic potential has a great effect on the optical absorptions. The calculated results also reveal that as the angular momentum quantum numbers of transitions increase, the optical absorption and refractive index peaks shift towards lower energies and the absorption and refractive index intensities increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号