首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We performed fragment molecular orbital (FMO) calculations to examine the molecular interactions between the prion protein (PrP) and GN8, which is a potential curative agent for prion diseases. This study has the following novel aspects: we introduced the counterpoise method into the FMO scheme to eliminate the basis set superposition error and examined the influence of geometrical fluctuation on the interaction energies, thereby enabling rigorous analysis of the molecular interaction between PrP and GN8. This analysis could provide information on key amino acid residues of PrP as well as key units of GN8 involved in the molecular interaction between the two molecules. The present FMO calculations were performed using an original program developed in our laboratory, called “Parallelized ab initio calculation system based on FMO (PAICS)”. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

2.
In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics‐based force fields, although they cannot fully describe protein–ligand interactions. A noteworthy computational method in development involves large‐scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large‐scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange‐correlation functionals, and solvation effects) on the binding energies of the FK506‐binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2‐MP2/6‐31G(d), is suitable for evaluating the protein–ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure–activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein–ligand interaction distance. Our acceleration scheme, which uses FMO2‐HF/STO‐3G:MP2/6‐31G(d) at Rint = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
We have theoretically examined the relative binding affinities (RBA) of typical ligands, 17beta-estradiol (EST), 17alpha-estradiol (ESTA), genistein (GEN), raloxifene (RAL), 4-hydroxytamoxifen (OHT), tamoxifen (TAM), clomifene (CLO), 4-hydroxyclomifene (OHC), diethylstilbestrol (DES), bisphenol A (BISA), and bisphenol F (BISF), to the alpha-subtype of the human estrogen receptor ligand-binding domain (hERalpha LBD), by calculating their binding energies. The ab initio fragment molecular orbital (FMO) method, which we have recently proposed for the calculations of macromolecules such as proteins, was applied at the HF/STO-3G level. The receptor protein was primarily modeled by 50 amino acid residues surrounding the ligand. The number of atoms in these model complexes is about 850, including hydrogen atoms. For the complexes with EST, RAL, OHT, and DES, the binding energies were calculated again with the entire ERalphaLBD consisting of 241 residues or about 4000 atoms. No significant difference was found in the calculated binding energies between the model and the real protein complexes. This indicates that the binding between the protein and its ligands is well characterized by the model protein with the 50 residues. The calculated binding energies relative to EST were very well correlated with the experimental RBA (the correlation coefficient r=0.837) for the ligands studied in this work. We also found that the charge transfer between ER and ligands is significant on ER-ligand binding. To our knowledge, this is the first achievement of ab initio quantum mechanical calculations of large molecules such as the entire ERalphaLBD protein.  相似文献   

4.
The ab initio fragment molecular orbital (FMO) calculations were performed for the cAMP receptor protein (CRP) complexed with a cAMP and DNA duplex to elucidate their sequence-specific binding and the stability of the DNA duplex, as determined by analysis of their inter- and intramolecular interactions. Calculations were performed with the AMBER94 force field and at the HF and MP2 levels with several basis sets. The interfragment interaction energies (IFIEs) were analyzed for interactions of CRP-cAMP with each base pair, DNA duplex with each amino acid residue, and each base pair with each residue. In addition, base-base interactions were analyzed including hydrogen bonding and stacking of DNA. In the interaction between DNA and CRP-cAMP, there was a significant charge transfer (CT) from the DNA to CRP, and this CT interaction played an important role as well as the electrostatic interactions. It is necessary to apply a quantum mechanical approach beyond the "classical" force-field approach to describe the sequence specificity. In the DNA intramolecular interaction, the dispersion interactions dominated the stabilization of the base-pair stacking interactions. Strong, attractive 1,2-stacking interactions and weak, repulsive 1,3-stacking interactions were observed. Comparison of the intramolecular interactions of free and complexed DNA revealed that the base-pairing interactions were stronger, and the stacking interactions were weaker, in the complexed structure. Therefore, the DNA duplex stability appears to change due to both the electrostatic and the CT interactions that take place under conditions of DNA-CRP binding.  相似文献   

5.
6.
The hemagglutinin (HA) protein of the influenza virus binds to the host cell receptor in the early stage of viral infection. A change in binding specificity from avian 2-3 to human 2-6 receptor is essential for optimal human-to-human transmission and pandemics. Therefore, it is important to reveal the key factors governing the binding affinity of HA-receptor complex at the molecular level for the understanding and prediction of influenza pandemics. In this work, on the basis of ab initio fragment molecular orbital (FMO) method, we have carried out the interaction energy analysis of HA-receptor complexes to quantitatively elucidate the binding specificity of HAs to avian and human receptors. To discuss the binding property of influenza HA comprehensively, a number of HAs from human H1, swine H1, avian H3 and avian H5 viruses were analyzed. We performed detailed investigations about the interaction patterns of complexes of various HAs and receptor analogues, and revealed that intra-molecular interactions between conserved residues in HA play an important role for HA-receptor binding. These results may provide a hint to understand the role of conserved acidic residues at the receptor binding site which are destabilized by the electrostatic repulsion with sialic acid. The calculated binding energies and interaction patterns between receptor and HAs are consistent with the binding specificities of each HA and thus explain the receptor binding mechanism. The calculated results in the present analysis have provided a number of viewpoints regarding the models for the HA-receptor binding specificity associated with mutated residues. Examples include the role of Glu190 and Gln226 for the binding specificity of H5 HA. Since H5 HA has not yet been adapted to human receptor and the mechanism of the specificity change is unknown, this result is helpful for the prediction of the change in receptor specificity associated with forthcoming possible pandemics.  相似文献   

7.
Efficient quantum chemical calculations of electrostatic properties, namely, the electron density (EDN), electrostatic potential (ESP), and electric field (EFL), were performed using the fragment molecular orbital (FMO) method. The numerical errors associated with the FMO scheme were examined at the HF, MP2, and RI‐MP2 levels of theory using 4 small peptides. As a result, the FMO errors in the EDN, ESP, and EFL were significantly smaller than the magnitude of the electron correlation effects, which indicated that the FMO method provides sufficiently accurate values of electrostatic properties. In addition, an attempt to reduce the computational effort was proposed by combining the FMO scheme and a point charge approximation. The error due to this approximation was examined using 2 proteins, prion protein and human immunodeficiency virus type 1 protease. As illustrative examples, the ESP values at the molecular surface of these proteins were calculated at the MP2 level of theory.  相似文献   

8.
All electron calculations were performed on the photosynthetic reaction center of Blastochloris viridis, using the fragment molecular orbital (FMO) method. The protein complex of 20,581 atoms and 77,754 electrons was divided into 1398 fragments, and the two‐body expansion of FMO/6‐31G* was applied to calculate the ground state. The excited electronic states of the embedded electron transfer system were separately calculated by the configuration interaction singles approach with the multilayer FMO method. Despite the structural symmetry of the system, asymmetric excitation energies were observed, especially on the bacteriopheophytin molecules. The asymmetry was attributed to electrostatic interaction with the surrounding proteins, in which the cytoplasmic side plays a major role. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

9.
Full‐quantum mechanical fragment molecular orbital‐based molecular dynamics (FMO‐MD) simulations were applied to the hydration reaction of formaldehyde in water solution under neutral conditions. Two mechanisms, a concerted and a stepwise one, were considered with respect to the nucleophilic addition and the proton transfer. Preliminary molecular orbital calculations by means of polarized continuum model reaction field predicted that the hydration prefers a concerted mechanism. Because the calculated activation barriers were too high for free FMO‐MD simulations to give reactive trajectories spontaneously, a More O’Ferrall–Jencks‐type diagram was constructed from the statistical analysis of the FMO‐MD simulations with constraint dynamics. The diagram showed that the hydration proceeds through a zwitterionic‐like (ZW‐like) structure. The free energy changes along the reaction coordinate calculated by means of the blue moon ensemble for the hydration and the amination of formaldehyde indicated that the hydration proceeds through a concerted process through the ZW‐like structure, whereas the amination goes through a stepwise mechanism with a ZW intermediate. In inspection of the FMO‐MD trajectories, water‐mediated cyclic proton transfers were observed in both reactions on the way from the ZW‐like structure to the product. These proton transfers also have an asynchronous character, in which deprotonation from the nucleophilic oxygen atom (or nitrogen atom for amination) precedes the protonation of the carbonyl oxygen atom. The results showed the strong advantage of the FMO‐MD simulations to obtain detailed information at a molecular level for solution reactions.  相似文献   

10.
L ‐2‐haloacid dehalogenase (L ‐DEX) catalyzes the hydrolytic dehalogenation of L ‐2‐haloalkanoic acids to produce the corresponding D ‐2‐hydroxyalkanoic acids. This enzyme is expected to be applicable to the bioremediation of environments contaminated with halogenated organic compounds. We analyzed the reaction mechanism of L ‐DEX from Pseudomonas sp. YL (L ‐DEX YL) by using molecular modeling. The complexes of wild‐type L ‐DEX YL and its K151A and D180A mutants with its typical substrate, L ‐2‐chloropropionate, were constructed by docking simulation. Subsequently, molecular dynamics (MD) and ab initio fragment molecular orbital (FMO) calculations of the complexes were performed. The ab initio FMO method was applied at the MP2/6‐31G level to estimate interfragment interaction energies. K151 and D180, which are experimentally shown to be important for enzyme activity, interact particularly strongly with L ‐2‐chloropropionate, catalytic water, nucleophile (D10), and with each other. Our calculations suggest that K151 stabilizes substrate orientation and balances the charge around the active site, while D180 stabilizes the rotation of the nucleophile D10, fixes catalytic water around D10, and prevents K151 from approaching D10. Further, D180 may activate catalytic water on its own or with K151, S175, and N177. These roles are consistent with the previous results. Thus, MD and ab initio FMO calculations are powerful tools for the elucidation of the mechanism of enzymatic reaction at the molecular level and can be applied to other catalytically important residues. The results obtained here will play an important role in elucidating the reaction mechanism and rational design of L ‐DEX YL with improved enzymatic activity or substrate specificity. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

11.
Preferential adsorption of dipeptide diastereomers (dialanine, Val-Ala) on clay mineral surfaces was observed. Significantly higher adsorption of dipeptides composed from only one type of enantiomer of amino acid units in comparison to those containing both L- and D-type of amino acid units in their molecules, was experimentally proven. This selectivity was explained in terms of different hydrophobic properties of diastereomers, which are probably controlled by intramolecular interactions between nonpolar and polar parts of dipeptide molecules affected by their stereochemistry. A significantly higher reactivity of stereoisomers composed from the same type of amino acid enantiomers to form amide bonds was proven as well. Theoretical study could distinguish different properties of the diastereomers. The results of the calculations indicate possible effects of molecular stability in the stereoselectivity during the adsorption and reactions of Ala(2) diastereomers.  相似文献   

12.
The search for the lowest energy conformation of complex {β-cyclodextrin (β-CD)+chlorambucil} were carried out by molecular mechanics method. Theoretical calculations of molecular interactions of complex were carried out using the molecular orbital method. The correlation between energy changes and molecular structures are discussed. The large interaction energies calculated by the molecular orbital method bears out the inclusion phenomenon.  相似文献   

13.
We have developed a fragment interaction analysis based on local MP2 (FILM) in the context of the fragment molecular orbital (FMO) scheme. The primary purpose of this work is to provide a tool for analyzing inter-fragment interaction associated with dispersion interactions in a large molecule such as protein and DNA. Our implementation of local MP2 (LMP2) is based on the algorithm developed by Pulay and Werner. A potential of FILM was demonstrated using the human immunodeficiency virus type 1 protease (HIV-1 PR) complexed with lopinavir (LPV). The total energy, binding affinity, and inter-fragment interaction energy (IFIE) by the FMO method using LMP2 were compared with those obtained by canonical MP2 and the site-specific information in dispersion interaction was obtained. It turned out that the FILM is a useful tool for analyzing the dispersion interaction between an amino acid residue and a specific site of a ligand.  相似文献   

14.
The three‐body fragment molecular orbital (FMO3) method is formulated for density‐functional tight‐binding (DFTB). The energy, analytic gradient, and Hessian are derived in the gas phase, and the energy and analytic gradient are also derived for polarizable continuum model. The accuracy of FMO3‐DFTB is evaluated for five proteins, sodium cation in explicit solvent, and three isomers of polyalanine. It is shown that FMO3‐DFTB is considerably more accurate than FMO2‐DFTB. Molecular dynamics simulations for sodium cation in water are performed for 100 ps, yielding radial distribution functions and coordination numbers. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
The crystal structure of metabotropic glutamate receptor 1 (mGluR1) complexed with 4‐fluoro‐N‐(4‐(6‐(isopropylamino)pyrimidin‐4‐yl)thiazol‐2‐yl)‐N‐methylbenzamide (FITM, a negative allosteric modulator) and its twelve close structural analogs with a broad spectrum of affinities (2.4 nM < IC50 > 10 000 nM) were investigated using quantum mechanical methods. The our own N‐layered integrated molecular orbital and molecular mechanics (ONIOM) was used to optimize the molecular geometries of the receptor with complexed ligands, which were then used to perform the ab initio calculations using the fragment molecular orbitals method with energy decomposition analysis (FMO‐EDA). The results clearly showed that residues Q6603.28 and/or Y8056.55 were the anchoring points for all the studied analogs of FITM, while the H‐bond with T8157.38 determined only the orientation of very active molecules containing an amino substituent in the pyrimidine moiety (e.g., FITM). The orientation of the other parts of ligands resulted from hydrophobic interactions mainly with L7575.44, F8016.51, or W7986.48. The applied ONIOM/FMO–EDA approach facilitated the study of effects related to very small changes in the ligand structure and led to conclusions regarding the significance of individual interactions in the allosteric binding pocket of mGluR1.  相似文献   

16.
The layered structure of clays with interlayer cations leads to unique chemical and mechanical properties, which have been capitalized on in the field of polymer/layered silicate nanocomposites. Hydrophilic silica surfaces can become organophilic with the inclusion of alkylammonium cations, which improve the wetting characteristics of the polymer matrix. In fact, the molecular level interactions of amino acids, either natural or non-natural, with clay surfaces are at the heart of fields of study as diverse as nanocomposites fabrication, drug delivery, bio-remediation of soils and catalysis of biological polymers, to name a few. The ubiquity of these systems and the potential uses to which they could be put suggests the necessity of a deeper understanding of the interplay of bonds, conformations, and configurations between the molecules and the hosts. The interactions of the amino acid lysine with sodium montmorillonite were studied using theoretical molecular modeling methods. The interlayer spacing of montmorillonite was increased by incorporating water molecules and allowing the system to evolve with molecular mechanics. Care was taken to retain the sodium cations in the interlayer. The initial amino acid conformation was obtained surrounding the molecule with numerous discrete water molecules and minimizing the system at the semi empirical level. The optimized amino acid was then placed in the interlayer space in a series of initial positions. Molecular mechanics calculations were performed and the final positions were analyzed. The results tended to indicate the preponderance of configurations which included surface-sodium-amino acid complexes with a variety of spatial arrangements. These results were compared with molecular dynamics calculations of similar systems from the literature.  相似文献   

17.
Fragment molecular orbital (FMO) method gives a powerful tool to investigate electronic structures for biological substances, and ABINIT-MP program has been developed to implement ab initio FMO calculations effectively. We introduced DFT code into ABINIT-MP and applied fragment-DFT (F-DFT) calculations to model polypeptides. The total accuracy of numerical integrations employed in those calculations was examined by the total numbers of electrons in the molecules. It is shown that the numerical integral of the total density function under the fragment approximation works as an indicator for the numerically total accuracy on the F-DFT implementation.  相似文献   

18.
The adsorption on the TiO(2) surface of two dipeptides AE (L-alanine-L-glutamic acid) and AK (L-alanine-L-lysine), that are "building blocks" of the more complex oligopeptide EAK16, has been investigated both theoretically and experimentally. Classical molecular dynamics simulations have been used to study the adsorption of H-Ala-Glu-NH(2) and H-Ala-Lys-NH(2) dipeptides onto a rutile TiO(2) (110) surface in water solution. Several peptide conformers have been considered simultaneously upon the surface. The most probable contact points between the molecules and the surface have been identified. Carbonyl oxygens as well as nitrogen atoms are possible Ti coordination points. Local effects are responsible for adsorption and desorption events. Self-interaction effects can induce molecular reorientations giving less strongly adsorbed species. The chemical structure and composition of thin films of the two dipeptides AE and AK on TiO(2) were investigated by XPS (X-ray photoelectron spectroscopy) measurements at both O and N K-edges. Theoretical ab initio calculations (DeltaSCF) were also performed to simulate the spectra, allowing for a direct comparison between experiment and theory.  相似文献   

19.
Accurate computational estimate of the protein–ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein–ligand simulations, we use a protein‐specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO‐RESP method to two proteins, dodecin, and lysozyme, we found that protein‐specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO‐RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
EGFR和4-苯胺喹唑啉类抑制剂之间相互作用模式的研究   总被引:12,自引:0,他引:12  
采用分子动力学和MM/PBSA相结合的方法预测了表皮生长因子受体和4-苯胺喹 啉类抑制剂的相互作用模式。在分子动力学采样的基础上,采用MM/PBSA的方法分 别预测了四种可能结合模式下表皮生长因子受体和4-苯胺喹唑啉类抑制剂间的结合 自由能。在MM/PBSA计算中,受体和抑制剂之间的非键相互作用能采用分子力学 (MM)的方法得到;溶剂效应中极性部分对自由能的贡献通过解Possion- Boltzmanne (PB)方程的方法得到;溶液效应中非极性部分对自由能的贡献则通过 分子表面积计算(SA)的方法得到。计算表明,在四种结合模式下,表皮生长因子受 体和4-苯胺喹唑啉类抑制剂之间的结合自由能有较大的差别。在最佳的相互作用模 式中,抑制剂的苯胺部分位于活性口袋的底部,能够与受体残基的非极性侧链产生 很强的范德华和疏水相互作用。抑制剂喹唑啉环上的N(1)原子能够和Met-769上的 NH形成稳定的氢键,而抑制剂上的N(3)原子则和周围的一个水分子形成氢键。同时 ,抑制剂双环上的取代基团也能和活性口袋外部的部分残基形成一定的范德华和疏 水相互作用。最佳结合模式能够很好地解释已有抑制剂结构和活性间的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号