首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations are made of metastable supercooled normal bulk states in lead samples. It is demonstrated that such states are realized when the critical field of surface superconductivity Hc3 is lower than the critical field Hc and in the opposite case. Therefore, the surface superconductivity is not a nucleus with supercritical parameters for the bulk superconductivity.  相似文献   

2.
Superconducting structures Pb–PG formed by filling a porous glass matrix with the lead from melt under pressure have been investigated. Samples with characteristic pore structure diameters of d ≈ 7, 3, and 2 nm have been studied. It has been found that the critical temperature of the superconducting transition in the samples under study is similar to the corresponding value Tc ≈ 7.2 K for bulk lead. At the same time, it has been observed that the critical magnetic field of the nanocomposites, which attains Hc(T = 0 K) ≈ 165 kOe for Pb–PG (3 nm), exceeds several times the value Hc(0) = 803 Oe for bulk lead. The low-temperature magnetic- field dependences of magnetic moment M(H) contain quasi-periodic flux jumps, which vanish with a decrease in the lead nanostructure diameter. A qualitative model of the observed effects is considered.  相似文献   

3.
Bulk nanocomposites based on superconducting metals Pb and In embedded into matrices of natural chrysotile asbestos with the nanotube internal diameter d ~ 6 nm have been fabricated and studied. The low-temperature electrical and magnetic properties of the nanocomposites demonstrate the superconducting transition with the transition critical temperature Tc ≈ (7.18 ± 0.02) K for the Pb–asbestos nanocomposite (this temperature is close to Tc bulk = 7.196 K for bulk Pb). The electrical measurements show that In nanofilaments in asbestos have Tc ~ 3.5–3.6 K that is higher than Tc bulk = 3.41 K for bulk In. It is shown that the temperature smearing of the superconducting transition in the temperature dependences of the resistance R(T) ΔT ≈ 0.06 K for the Pb–asbestos and ΔT ≈ 1.8 K for the In–asbestos are adequately described by the fluctuation Aslamazov–Larkin and Langer–Ambegaokar theories. The resistive measurements show that the critical magnetic fields of the nanofilaments extrapolated to T = 0 K are Hc(0) ~ 47 kOe for Pb in asbestos and Hc(0) ~ 1.5 kOe for In in asbestos; these values are significantly higher than the values for the bulk materials (H\(H_{\rm{c}}^{\rm{bulk}}\) = 803 Oe for Pb and \(H_{\rm{c}}^{\rm{bulk}}\) = 285 Oe for In). The results of the electrical measurements for Pb?asbestos and In–asbestos agree with the data for the magnetic-field dependences of the magnetic moment in these nanocomposites.  相似文献   

4.
We report on structural, magnetic, conductivity, and thermodynamic studies of FeSe0.5Te0.5 single crystals grown by self-flux and Bridgman methods. The lowest values of the susceptibility in thenormal state, the highest transition temperature T c of 14.4 K, and the largest heat-capacity anomaly at T c were obtained for pure (oxygen-free) samples. The criticalcurrent density j c of 8.6 × 104A/cm2 (at 2 K) achieved in pure samples is attributed to intrinsic inhomogeneity due to disorder at the anion sites. The samples containing an impurity phase of Fe3O4 show increased j c up to2.3 × 105A/cm2 due to additional pinning centers. The upper critical field\(H_{c2}\)of ~500 kOe is estimated from the resistivity studyin magnetic fields parallel to the c-axis using a criterion of a 50%drop of the normal state resistivity R n . The anisotropy ofthe upper critical fieldγ H c2 =H ab c2/H c2 c reaches a value ~6 at\(T\longrightarrow T_c\). Extremely low values of the residualSommerfeld coefficient \(\gamma_r\) of about 1 mJ/mol K2,compared to the normal state Sommerfeld coefficient γ n = 25mJ/mol K2 for pure samples indicate a high volume fraction of thesuperconducting phase (up to 97%). The electronic contribution to the specific heat in thesuperconducting state is well described within a single-band BCS model with a temperature dependent gapΔ(0 K) = 27(1) K. A broad cusp-like anomaly in the electronic specific heat observed at low temperatures in samples with suppressed bulk superconductivity is ascribed to a splitting of the ground state of the Fe2+ ions at the 2c sites. This contribution is fully suppressed in the ordered state in samples with bulk superconductivity.  相似文献   

5.
The dependence of the critical temperatureT c upon pressureP is measured in the pressure range up to 160 kbar. The experimental technique developed for very high pressure-low temperature experiments (preceding article) is improved by introducing a double-sample electrical resistance cell. An internal pressure calibration is therefore possible at some well-established room temperature pressure reference points commonly used. Both metals, tetragonal white tin and fcc-lead, show a monotonic decrease ofT c vs.P with upward curvature. The results recommend the use of Pb as a secondary standard for very high pressure experiments at Helium temperatures. In addition, high pressure polymorphic modifications of Sn and Pb are found to show superconductivity withT c =(5.30±0.10) ?K for Sn III atP=113 kbar andT c =(3.55±0.10) ?K for Pb II atP=160 kbar.  相似文献   

6.
The anisotropy in the superconducting properties of single-crystal Nd1.85Ce0.15CuO4 was studied from measurements of the heat capacity within the temperature interval 2–40 K in zero magnetic field and in a magnetic field of 8 T. We report on the first observation of heat capacity jumps occurring at the superconducting transition for various magnetic field orientations with respect to the crystallographic axes and on a strong anisotropy of the magnetic contribution to heat capacity in magnetic fields oriented in the a-b plane and perpendicular to it. These measurements yielded the anisotropy in the electronic heat capacity coefficient γn(H) and in the superconducting transition temperature Tc(H). The angular dependence of the Sommerfeld coefficient γn in the a-b plane observed in a magnetic field of 8 T exhibits four-lobe symmetry and zero gap direction of the order parameter. A comparison of the results obtained on the Nd1.85Ce0.15CuO4 single crystal with the data available for La1.85Sr0.15CuO4 permits one to conclude that the mechanisms of superconductivity in the electron-and hole-doped superconductors are similar.  相似文献   

7.
The influence of small additions of 3d-metals (Cr, Fe, Co) on the superconducting transition temperature of lead has been studied. Both components are condensed simultaneously on a quartz substrate, held at 10 °K. With this “Quench evaporation technique” we get a statistical distribution of the impurity atoms in the lead matrix. As in early experiments on In and Sn the superconducting transition temperature of Pb decreases linearly with increasing 3d-metal content. This is in agreement with the theoretical results ofAbrikosov-Gorkov andSkalski et al. For the first time an influence of 3d-metal oxides (Cr-, Mn- and Co-oxide) on the superconductivity of Pb has been found. The transition temperatureT c decreases linearly with increasing oxide content (c) as in the case of the pure metals. For Mn and Co the slopesdT c /dc are nearly equal for the pure metal and its oxide. In the case of Cr the influence of the oxide is about seven times greater than that of the pure metal. Furtheron it is shown by annealing experiments that the degree of precipitation has also an influence on the transition temperature in the system of lead with Fe, Co and CO2O3.  相似文献   

8.
The recently discovered (Li1-xFex)OHFeSe superconductor with Tc about 40 K provides a good platform for investigating the magnetization and electrical transport properties of FeSe-based superconductors. By using a hydrothermal ion-exchange method, we have successfully grown crystals of (Li1-xFex)OHFeSe. X-ray diffraction on the sample shows the single crystalline PbO-type structure with the c-axis preferential orientation. Magnetic susceptibility and resistive measurements show an onset superconducting transition at around Tc=38.3 K. Using the magnetization hysteresis loops and Bean critical state model, a large critical current Js is observed in low temperature region. The critical current density is suppressed exponentially with increasing magnetic field. Temperature dependencies of resistivity under various currents and fields are measured, revealing a robust superconducting current density and bulk superconductivity.  相似文献   

9.
The anomalous behavior of the isochoric heat capacity of a mixture of methane, pentane and heptane is studied experimentally in the vicinity of the liquid-vapor critical point in the cases when (a) the critical temperature T c approaches the tricritical point T TCP and (b) the critical temperature approaches the upper critical end point T U . It is shown that in all cases, the singular part of the heat capacity of the mixture has the form Csing=A¦τ¦, where τ=(T ? T c )/T c and α≈0.11. When T c T U , amplitude A of the heat capacity anomaly is found to be approximately constant. At the same time, the amplitude of the anomaly tends to zero in the vicinity of the tricritical point: A∝¦τc¦ε, where τc=(T c ? T TCP )/T TCP and ε=1.6?1.7. The inevitable vanishing of this mode of the heat capacity anomaly leads to a negative value of the critical index \(\tilde \alpha\) characterizing the heat capacity anomaly at the tricritical point, while the tricritical point theory and the isomorphism hypothesis predict \(\tilde \alpha = 0.5\).  相似文献   

10.
Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-T c superconductivity.  相似文献   

11.
Using the theory of high-temperature superconductivity based on the idea of the fermion-condensation quantum phase transition (FCQPT), we show that neither the d-wave pairing symmetry, the pseudogap phenomenon, nor the presence of the Cu-O2 planes is of decisive importance for the existence of high-T c superconductivity. We analyze recent experimental data on this type of superconductivity in different materials and show that these facts can be understood within the theory of superconductivity based on the FCQPT. The latter can be considered as a universal cause of high-T c superconductivity. The main features of a room-temperature superconductor are discussed.  相似文献   

12.
We show that the superconducting transition temperature T c (H) of a very thin highly disordered film with strong spin-orbital scattering can be increased by a parallel magnetic field H. This effect is due to the polarization of magnetic impurity spins, which reduces the full exchange scattering rate of electrons; the largest effect is predicted for spin-1/2 impurities. Moreover, for some range of magnetic impurity concentrations, the phenomenon of superconductivity induced by magnetic field is predicted: the superconducting transition temperature T c (H) is found to be nonzero in the range of magnetic fields 0 < H* ≤ HH c .  相似文献   

13.
The magnetic superconductorRu0.9Sr2YCu2.1O7.9 (Ru-1212Y) has beeninvestigated using neutron diffraction under variable temperature and magnetic field. Withthe complementary information from magnetization measurements, we propose a magnetic phasediagram T-H for the Ru-1212 system. Uniaxialantiferromagnetic (AFM) order of 1.2μ B /Ruatoms with moments parallel to the c-axis is found below the magnetictransition temperature at  ~140 K in the absence of magnetic field. In addition,ferromagnetism (FM) in the ab-plane develops below  ~120 K, butis suppressed at lower temperature by superconducting correlations. Externally appliedmagnetic fields cause Ru-moments to realign from the c-axis to theab-plane, i.e. along the ?1,1,0? direction, and induce ferromagnetismin the plane with  ~1μ B at 60 kOe.These observations of the weak ferromagnetism suppressed by superconductivity and thefield-induced metamagnetic transition between AFM and FM demonstrate not only competingorders of superconductivity and magnetism, but also suggest a certain vortex dynamicscontributing to these magnetic transitions.  相似文献   

14.
We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose–Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of Hc2(T), especially at low temperatures. In BEC limit and in the region of BCS–BEC crossover Hc2(T), dependence becomes practically linear. Disordering also leads to the general growth of Hc2(T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of Hc2(T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of Hc2(T) at low temperatures, so that the Hc2(T) dependence becomes concave. In BCS–BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region Hc2 (T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase Hc2 (T = 0) also making Hc2(T) dependence concave.  相似文献   

15.
The effect of ion irradiation on the superconducting transition temperatureT c and resistivityρ ab (T) of YBa2Cu3O7-x films with different oxygen content (initial temperatureT c0≈90 K and 60 K) is studied experimentally. The dependenciesT c /T c0 on residual resistivityρ o are obtained in very wide range 0.2<T c /T c0 <1 andρ o μΩ·cm. The critical values ofρ o , corresponding to the vanishing of superconductivity, are found to be an order of magnitude larger then those predicted by theory ford-wave pairing. At 0.5÷0.6<T c /T c0<1 the experimental data are in close agreement with theoretical dependencies, obtained for the anisotropics-wave superconductor within the BCS-framework.  相似文献   

16.
The influence of spin fluctuations on the thermodynamic properties of a helical ferromagnet MnSi has been investigated in the framework of the Hubbard model with the electronic spectrum determined from the first-principles LDA + U + SO calculation, which is extended taking into account the Hund coupling and the Dzyaloshinskii–Moriya antisymmetric exchange. It has been shown that the ground state of the magnetic material is characterized by large zero-point fluctuations, which disappear at the temperature T* (<T c is the temperature of the magnetic phase transition). In this case, the entropy abruptly increases, and a lambdashaped anomaly appears in the temperature dependence of the heat capacity at constant volume (C V (T)). In the temperature range T* < T < T c , thermal fluctuations lead to the disappearance of the inhomogeneous magnetization. The competition between the increase in the entropy due to paramagnon excitations and its decrease as a result of the reduction in the amplitude of local magnetic moments, under the conditions of strong Hund exchange, is responsible for in the appearance of a “shoulder” in the dependence C V (T)).  相似文献   

17.
The dependence of the superconducting (Meissner) phase volume V m on the YBa2Cu3O6+δ doping level was studied. It was found that V m monotonically decreases as the doping level is lowered and vanishes at the same value of δ ~ 0.3 as Tc does. It was concluded that the Tc decrease and the increase in the pseudogap formation temperature T* as the doping level is lowered are caused by a decrease in the average size of superconducting clusters. This conclusion suggests an extraordinary superconductivity mechanism in HTSC.  相似文献   

18.
We report on the discovery and novel physics of a new superconductivity dome in LaFeAsO1?xFx with high-doping rate (0.25 ≤x≤0.75) synthesized by using the high-pressure technique. The maximal critical temperature Tc = 30 K peaked at xopt = 0.5 ~0.55, which is even higher than that at x≤ 0.2. By nuclear magnetic resonance (NMR), we find that the new superconducting dome is far away from a magnetically ordered phase without low-energy magnetic fluctuations. Instead, NMR and transmission electron microscopy measurements indicate that a C4 rotation symmetry-breaking structural transition takes place for x> 0.5 above Tc. The electrical resistivity shows a temperature-linear behavior around the doping level where the crystal transition temperature extrapolate to zero and Tc is the maximal, suggesting the importance of quantum fluctuations associated with the structural transition. Our results point to a new paradigm of high temperature superconductivity.  相似文献   

19.
A comparative study of the magnetization and static magnetic susceptibility of high-temperature superconductors (HTSC) YBa2Cu3Oy synthesized by two variants of the sol–gel method with different average sizes of crystallites 〈 D〉 ranging 0.4–2 μm has been performed in constant magnetic fields (Н ≤ 6 kOe). It has been shown that the different annealing temperatures and times, at which their crystal structure is formed, change both the average sizes of crystallites 〈D〉 and the sizes of the structural homogeneity regions 〈l〉 and, at the same time, the magnetic field penetration depth (λ) and the coherence length (ξ). As a result, such parameters as 〈D〉 ~ λ and 〈l〉 ~ ξ become comparable, leading to a change in the physical characteristics of HTSCs. It has also been shown that the superconducting transition temperature Tc determined from the measurements of magnetic characteristics in constant magnetic fields remains within values optimal for superconductivity (Tc ≈ 92 K) in the case of an optimal number (y) of oxygen atoms, which determine the levels of charge doping for a given compound.  相似文献   

20.
Resistance and magnetization measurements have been made onα-phase Indium Lead alloys in a longitudinal magnetic field. The results have been analyzed in terms of the Ginzburg-Landau-Abrikosov-Gorkov theory and the parameter? of the alloys has been determined. Alloys with concentrations greater than 4.2 at % Pb are superconductors of the second kind. The temperature variation of? depends on the mean free path and is somewhat less pronounced for the more dilute alloys. This behaviour is not adequately described by the recent theories. The phenomena of surface superconductivity and its critical fieldH c3 are in good agreement with the theory ofSaint-James andde Gennes except for the constantC 0=H c3/H c2 which for all the alloys studied is about 10% higher than the theoretical value 1.694. Electrolytic deposition of Cu on the surface reducesH c3 and givesC cu=1.15 and excludes the alternative explanation of surface filaments. The concentration dependences ofT c andγ show irregularities at 7 at % Pb. They can be explained by the touching of the Fermi surface with the Brillouin zone boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号