首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
原子吸收光谱法测定铅的进展   总被引:14,自引:0,他引:14  
对近年来国内原子吸收光谱法测定铅的进展进行了评述,内容包括火焰原子吸收光谱法、石墨炉原子吸收光谱法和氢化物发生原子吸收光谱法。  相似文献   

2.
车间空气中铅测定的质量控制方法   总被引:1,自引:0,他引:1  
空气铅是评价铅作业环境中铅接触和吸收程度的常用指标.目前测定铅烟、铅尘的方法,有火焰原子吸收光谱法、双硫腙分光光度法、氢化物-原子吸收光谱法以及微分电位溶出法等[1].  相似文献   

3.
氢化物发生-原子吸收光谱法测定食盐中微量铅   总被引:1,自引:0,他引:1  
食盐中铅测定采用萃取-原子吸收光谱法,方法使用有机试剂,操作也复杂。采用石墨炉原子吸收光谱法直接测定,氯化钠干扰很大。本文提出氢化物发生-原子吸收光谱法测定食盐中铅。采用WHG-102A2型流动注射氢化物发生器与原子吸收光谱仪配合,载气压力作为自动化能源,流动注射方  相似文献   

4.
仇佩虹  张华杰  林丽 《分析化学》2000,28(9):1183-1183
1引言 铅对人体的健康,疾病和生长发育的影响已受到人们越来越多的关注。目前常见的测定血铅的方法有原子吸收光谱法,阳极溶出伏安法等。而用氢化物发生原子吸收法测定食品及环境样品中的铅已有报道,但尚未见用于测定血清铅的报道。本文采用流动注射氢化物发生一电加热石英管.原子吸收法测定血清铅,以K3Fe(CN)6为氧化剂,HCl-KCl为缓冲剂,该方法具有灵敏度高,准确度及重现性好,操作简便等优点,可用于临床血清样品的测定。2实验部分2.1仪器与试剂WYX-9003型原子吸收分光光度计(沈阳分析仪器厂),W…  相似文献   

5.
快速升温石墨炉原子吸收光谱法直接测定水中铅镉银   总被引:7,自引:0,他引:7  
水中铅、镉和银的含量均为国家生活饮用水卫生标准中的重要指标。对于铅、镉和银的测定,国标法分别用吸光光度法、火焰原子吸收光谱法和石墨炉原子吸收光谱法。石墨炉原子吸收光谱法具有较高的灵敏度,但由于其常规程序升温时间较长,影响了分析速度。  相似文献   

6.
氢化物发生—电加热原子吸收测定高纯铅中砷   总被引:3,自引:0,他引:3  
铅是工农业生产中一种重要原料 ,高纯电解铅的纯度虽然优于 99.99% ,但一些痕量杂质元素的存在仍严重影响铅的质量 ,检测这些杂质元素的含量是铅生产工业中重要环节。目前 ,高纯电解铅中砷的测定一般采用光度法 ,此法较繁琐而且灵敏度低。本文通过试验 ,提出了用氢化物标准加入原子吸收光谱法 ,以碘化钾和硫脲作还原剂和掩蔽剂测定高纯铅中砷。该法灵敏度高 ,干扰少。标准加入可以消除基体效应等优点。1 试验部分1.1 主要仪器与试剂GGX 9原子吸收分光光度计WHG 10 2A2流动注射电热石英管原子化氢化物发生器 (北京瀚时制作所 )碘化…  相似文献   

7.
氢化物发生辅助雾化火焰原子吸收法测定水中铅   总被引:3,自引:0,他引:3  
研究了一种提高火焰原子吸收测定铅灵敏度的新方法——氢化物发生辅助雾化的火焰原子吸收法;方法采用硼氢化钠与铅(Ⅳ)在原火焰原子吸收雾化器喷口处反应生成氢化物,以提高火焰原子吸收法的雾化效率;采用重铬酸钾一酒石酸预处理体系,重铬酸钾氧化样品中铅(Ⅱ)为铅(Ⅳ),酒石酸稳定铅(Ⅳ)的亚稳态化合物;对各种实验参数和干扰情况也进行了研究;方法操作简单、快速,灵敏度比通常的火焰原子吸收法提高了6.8倍;检出限(K=3,n=11)为6.64μg/L,线性范围为0.021~3.2mg/L;测定水样的回收率达94%~99%。  相似文献   

8.
流动注射氢化物发生原子荧光光谱法测定土壤中铅   总被引:1,自引:0,他引:1  
土壤中铅的测定,以往多用石黑炉[1]或氢化物发生[2]原子吸收光谱法,本文通过试验表明,应用流动注射氢化物发生原子荧光光谱法测定,使方法更为简便、快速,结果准确可靠.  相似文献   

9.
原子吸收光谱法测定岩石矿物中的锑早有报道。但是,火焰法的灵敏度很低;氢化物热解法的精密度差,干扰多。为克服这些缺点,本文采用了双毛细管喷雾器-氢化物原子吸收光谱法测定岩石矿物中的微量锑。本方法的特点是灵敏度较高,操作简单快速,干扰少,精密度好。一、仪器与试剂日立170-30型原子吸收分光光度计;双毛细管喷  相似文献   

10.
提出了一种顺序流动注射-氢化物发生-原子吸收光谱分析方法。食品样品经硝酸-高氯酸(4+1)混合酸消化,以硼氢化钾为还原剂,盐酸溶液为载流,用氢化物发生-原子吸收光谱法测定食品中铅、镉和汞含量的方法。在优化的试验条件下,铅、镉和汞的质量浓度分别在一定的范围内与其吸光度呈线性关系,检出限(3s/k)分别为0.20,0.04...  相似文献   

11.
本文采用喷流型连续氢化物发生器,氢化物-火焰原子吸收光谱法对岩石、矿物中微量铅的测定条件进行了研究。用铁氰化钾作为铅的氧化剂,草酸为干扰抑制剂,于217.0nm波长,测得铅的特征浓度为0.012μg/ml(1%吸收)。相对标准偏差(对0.6μg/ml Pb)为0.97%。  相似文献   

12.
石英缝管火焰原子吸收法测定食醋中的痕量铅   总被引:4,自引:0,他引:4  
采用石英缝管装置,辅助火焰原子吸收光谱法测定了食醋中的痕量铅。对铅的测量灵敏度较常规火焰原子吸收法提高了4倍以上。装置简单,方法简便,有效地降低了对测量灵敏度较低的组分的富集要求,提高了分析结果的可靠性。  相似文献   

13.
氢化物原子吸收法测定镍基合金中痕量铅   总被引:1,自引:0,他引:1  
原子吸收法测定铅的灵敏度较低,常常应用有机试剂萃取富集,氢化物测定铅的条件非常苛刻,存在着一定的干扰。本文用氮-氢火焰考察了酒石酸-重铬酸钾-亚铁氰化钾体系中氢化法测铅的条件及共存离子的干扰,在酒石酸-重铬酸钾、硝酸-过氧化氢及硝酸-过硫酸铵三个体系中,加入亚铁氰化钾,使灵敏度提高了12倍。为克服镍、铜、铁等共存元素对测定的影响,采用硫酸锶共沉淀法进行分离,成功地测定了高温合金中的铅。方法适于镍基合金中0.0001—0.002%铅的测定,检出限为0.014微克/毫升;测定0.0005%的铅,变异系数为12.6%。一、仪器与试剂WFX-1A型原子吸收分光光度计;本所自制AHG-1型半自动氢化物装置。  相似文献   

14.
氢化物发生-原子吸收光谱法测定大米中微量砷   总被引:4,自引:0,他引:4  
砷是一种毒性很大的元素,对人的心肺、呼吸、神经、生殖、造血、免疫系统都有不同程度的损伤作用]。由于大气、地下水、土壤、肥料和农药等污染,砷会在粮食的可食部分积累,因此砷的测定已成为食品和环境监测的必测项目。测砷的常规方法有砷斑法、银盐法。目前,氢化物原子吸收光谱法,氢化物原子荧光法已有报道。本文采用氢化物发生—原子吸收光谱法测定大米中砷,本法具有灵敏度高,干扰少,操作简便等特点,结果满意。  相似文献   

15.
石墨炉原子吸收光谱法测定硒的条件研究   总被引:10,自引:0,他引:10  
硒是人类和动物的必需微量营养元素之一,过量摄入则会引起急性或慢性中毒。近几十年来,人们对硒的测定方法进行了很多有益的探讨,应用较多的有原子荧光法、氢化物发生原子吸收光谱法、石墨炉原子吸收光谱法和中子活化法等,其中石墨炉原子吸收光谱法测定硒具有操作简便、分析速度快、灵敏度高等优点而得到了较快的发展。但由于硒是易挥发元素,  相似文献   

16.
X射线荧光光谱法测定铜精矿中砷、铅和镉   总被引:1,自引:0,他引:1  
铜精矿是国家重要资源性商品,砷、铅和镉属于铜精矿产品中的有害元素,国家质量监督检验检疫总局、商务部、国家环保总局联合发布的第49号公告,以及国家强制性标准GB 20424—2006规定了铜精矿产品中所含有害元素的限量。目前,砷、铅和镉等元素的分析通常采用火焰原子吸收光谱法、滴定法、氢化物发生-原子荧光光谱法、电感耦合等离子体原子发射光谱法(ICP-AES)等,上  相似文献   

17.
报道了连续氢化物发生-电加热石英管原子吸收光谱法实验系统。并以铅烷(PbH4)发生为代表对氢化物发生器构型,残留液体积、原子化温度、石英管电加热区域长度、载气流速、测量波长选择泵速、进样管长度等诸多影响因素作了试验。  相似文献   

18.
氢化物发生-原子吸收分光光度法测定食品中铅   总被引:14,自引:0,他引:14  
氢化物发生-原子吸收光度法测定铅,已有文献报导。但对反应条件、干扰离子消除的研究尚有不足。本文提出盐酸-铁氰化钾-硼氢化钠体系发生铅化氢,其灵敏度较文献报告的高,同时改进了酸度控制范围,并在不加氰化钾掩蔽的情况下,可消除干扰。方法简便易行,满意地用于食品中铅的测定。实验部分仪器与主要试剂: (1)WFD-Y_2型原子吸收分光光度计。 (2)氢化物发生器:图1。  相似文献   

19.
研究了微富集柱与原子吸收光谱法联用测定铅的各种影响因素,实验利用自制的微型电化学富集性对金属离子的吸附效应进行预富集,再瞬间溶出直接进入原子吸收进行测定,极大地提高了测试灵敏度和降低了检出限,可使铅测定中的特征浓度和检出限降低1-2个数量级。  相似文献   

20.
采用微波消解方式处理样品,建立了氢化物发生-原子吸收光谱法测定大米中痕量铅的分析方法。对载气流速、硼氢化钠浓度、溶液酸度以及铅反应试剂加入量进行了研究。在选择了最佳实验条件下,方法的检出限为0.05μg/L,加标回收率在96.8%~103.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号