首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
空气中低浓度甲醛的治理和消除一直备受关注.在较低的反应温度下将甲醛转化为CO_2和H_2O的催化氧化法具有能耗低、效率高和环境友好等优点,被认为是一种最具应用发展前景的甲醛消除技术.在各种催化剂体系中,一些铁基氧化物(Fe_2O_3,FFe_3O_4或ferrihydrite)负载的Pt催化剂表现出较为优异的催化性能,能够在室温下实现甲醛的完全氧化.越来越多的研究表明,载体材料的结构及形貌是影响贵金属催化剂性能的主要因素.因此,深入研究Pt物种在不同类型铁基氧化物表面的分散情况及界面间相互作用,对理解催化剂活性中心的性质,设计制备性能更加优异的负载型贵金属催化剂具有重要科学意义.本文采用共沉淀法一步合成出八面体Fe_3O_4亚微米晶负载Pt催化剂(Pt/Fe_3O_4),考察了不同热处理温度对催化剂催化甲醛氧化反应性能的影响.结果表明,在80°C下热处理的催化剂(Pt/Fe_3O_4-80)具有很高的催化活性,在室温下甲醛的转化率可接近100%.随着催化剂热处理温度的升高,催化剂活性有所降低.此外,Pt/Fe_3O_4催化剂还表现出良好的稳定性,经长时间存放或连续运行后催化剂的活性基本保持不变.此外,在一定湿度范围内(RH=30%–80%),水的存在能够显著提高Pt/Fe_3O_4催化剂的甲醛催化氧化性能.采用各种表征技术对Pt/Fe_3O_4的结构、形貌、价态及氧化还原性等物理化学性质进行了研究.结果表明:采用该合成方法能够得到粒径较为均一、具有尖晶石结构和八面体形貌的Fe_3O_4亚微米晶,尺寸较小的Pt纳米粒子(平均2.5 nm)均匀分布在八面体Fe_3O_4晶体的表面,且Fe_3O_4载体表面还存在一定量的羟基物种.随着热处理温度的升高,催化剂表面的Pt物种和Fe物种的价态均发生明显变化.结果证实,Pt纳米粒子与Fe_3O_4载体间的相互作用力会随着热处理温度的升高而发生明显变化.对于性能较为优异的Pt/Fe_3O_4-80催化剂,Pt纳米粒子与Fe_3O_4载体之间存在着强度适宜的相互作用,能够产生相对较多的Pt-O-Fe Ox和Pt-OH-Fe Ox界面活性位,从而使其能够在较低的反应温度下表现出较强的活化分子氧的能力.此外,反应体系中引入的水分子能够与氧分子在界面活性位上共同活化,形成表面活性-OH物种,从而有效促进催化剂反应性能的提升.  相似文献   

2.
Photocatalysis and Fenton process are two primary and promising advanced oxidation processes to degrade organic pollutants. However, the practical applications ...  相似文献   

3.
A new NC palladacycle was synthesized and supported on cucurbit[6]uril (CB[6]). The CB[6]‐supported palladium was used as an efficient nanocatalyst for the Suzuki reaction. In these reactions various aryl halides were reacted with arylboronic acids in H2O–EtOH at both room temperature and 40 °C. The obtained Pd nanocatalyst exhibited excellent reactivity and stability in C ? C bond formation, which confirms that the catalyst is a completely active heterogeneous species. The Pd nanocatalyst was characterized using X‐ray diffraction, scanning electron microscopy and transmission electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
FeNi3\SiO2\HPG\PbS magnetic nanoparticles (MNPs) catalyst was readily prepared from inexpensive starting materials in aqueous media which catalyzed the synthesis 2-amino-4H-chromene via intermittent microwave irradiation. X-ray diffraction, transmission electron micrographs, and scanning electron micrographs were employed to characterize the properties of the synthesized FeNi3\SiO2\HPG\PbS MNPs. High catalytic activity and ease of recovery from the reaction mixture using external magnet and several reuse times without significant losses in performance are additional eco-friendly attributes of this catalytic system.  相似文献   

5.
In this paper, the effect of additive Fe on Ni/Al2O3 catalyst for CO2 methanation was studied. A series of bimetallic Ni–Fe catalysts with different Ni/Fe ratios were prepared by impregnation method. For comparison, monometallic Fe‐based and Ni‐based catalysts were also prepared by the same method. The characterization results showed that adding Fe to Ni catalyst on the premise of a low Ni loading(≦12 wt.%) enhanced CO2 methanation performance. However, when the Ni loading reached 12 wt.%, the catalytic activity decreased with the increase of Fe content, but still higher than the corresponding Ni‐based catalyst without Fe. Among them, the 12Ni3Fe catalyst exhibited the highest CO2 conversion of 84.3 % and nearly 100% CH4 selectivity at 50000 ml g‐1 h‐1 and 420 °C. The enhancement effect of adding Fe on CO2 methanation was attributed to the dual effect of suitable electronic environment and increased reducibility generated by Fe species.  相似文献   

6.
Copper supported on 2-(1H-benzo[d]imidazol-2-yl)aniline (BIA)-functionalized Fe3O4 nanoparticles (Cu-BIA-Si-Fe3O4) as a novel magnetic catalyst was designed and used for the synthesis of new products via Ullmann and Suzuki cross-coupling reactions. The Ullmann reaction was performed by mixing arylboronic acid with aniline derivatives in dimethylsulfoxide solvent. Also, diaryls were synthesized via Suzuki C–C reactions between aryl halides and phenylboronic acid in the same solvent. The prepared materials and catalyst were characterized with various analytical techniques. The Cu-BIA-Si-Fe3O4 catalyst demonstrated catalytic efficiency with good to excellent yields for both types of reactions in comparison with commercial palladium catalysts. Also, the catalyst could be recovered by a simple filtration and retained its activity even after several cycles.  相似文献   

7.
γ-Al2O3作为催化剂载体具有较大的比表面积,机械强度高,孔结构适宜,但不耐高温。近年来,氧化锆载体以其耐高温等[1]独特性质引起多方面的关注[2-4],它能与所负载的金属产生强烈的电子相互作用,影响催化剂的吸附、氧化和还原性能。但是ZrO2比表面积较小,且随焙烧温度的升高急剧下降,如单独作为催化剂载体,其应用受到很大限制。若将ZrO2分散到γ-Al2O3表面上,可制得兼备两者优点的复合载体。当ZrO2中加入Y2O3,能产生特殊的氧空穴[5],具有氧离子传导功能和导电性;与活性组分相结合能在很大程度上提高反应速度。我们用Y…  相似文献   

8.
以共沉淀法所制的工业铁硅球体催化剂(indus-FS)为原料,用改进的有机胺蒸气相传输转化法,得到了负载高分散铁的交织氧化硅纳米线球体催化剂(NW-FS),并用于费托合成反应.在所制纳米线催化剂中,原料催化剂中氧化硅在氧化铁诱导下成功地转变成纳米线交织微球载体,而氧化铁组分则高度分散在氧化硅纳米线上.用扫描电镜、透射电镜、X射线衍射、低温氮吸附、X射线光电子能谱和程序升温还原等方法对所得纳米线催化剂进行了表征.在费托合成中,纳米线铁硅催化剂由于其特殊的堆积结构所导致的低的扩散阻力和高的铁活性组分分散度,提高了低碳烯烃尤其是乙烯的选择性.纳米线铁硅催化剂上低碳产物(C2–C4)的烯烷比为3.3,高于母体工业催化剂的1.9.  相似文献   

9.
An efficient procedure for the synthesis of new chromenes by the multicomponent reaction of aldehydes, 4‐hydroxycoumarin and 2‐hydroxynaphthalene‐1,4‐dione in the presence of an ionic liquid supported on Fe3O4 nanoparticles is described. The ionic liquid supported on Fe3O4 nanoparticles as a magnetic catalyst gives products in high yields. Significant features of this method are: short reaction times, excellent yields, green method and use of an effective catalyst that can be recovered and reused many times without loss of its catalytic activity.  相似文献   

10.
As the heterogeneous Fenton-like catalyst, a series of spinel ferrites magnetic nanoparticles NiFe2O4 and NiFe2O4@SiO2 catalysts were synthesized and were applied into the oxidation of rhodamine B, which exhibited the good catalytic performance and strong magnetic separation after reaction.  相似文献   

11.
制备了铁,钴,铜酞菁/Y型发子筛,利用元素分析,IR、UV-Vis,TG、BET及XRD确定了分子筛笼中铁,钴,铜酞菁化合物的生成及其晶体结构,考察了实验参数对苯酚的转化率及产物选择性的影响。  相似文献   

12.
A novel heterogenized organometallic catalyst was synthesized by coordinating palladium with polyvinyl alcohol‐functionalized Fe3O4@SiO2 nanospheres. This novel catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscope, field emission scanning electron microscope, dynamic light scattering, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, energy dispersive X‐ray analysis, thermogravimetric analysis and inductively coupled plasma analysis. The prepared palladium nanoparticles supported on polyvinyl alcohol functionalized Fe3O4@SiO2 nanoparticles were successfully applied as a magnetically recyclable catalyst in Heck and Sonogashira coupling reactions in water. They showed remarkable activity toward aryl halides (I, Br, Cl) using very low palladium loading in excellent yields and demonstrated high TONs (mmol of product per mmol of catalyst). Also, the catalyst could be magnetically separated and reused seven times without any appreciable loss of catalytic activity.  相似文献   

13.
In this work, we synthesized Ni2+-containing 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium chloride ionic liquid on magnetic Fe3O4 nanoparticles. The catalytic activity of these novel nanocomposites was finally evaluated for the Heck reaction at 100 °C, and can be reused after washing without loss in activity. The immobilized ionic liquid catalysts proved to be effective and easily separated from the reaction media by applying an external magnetic field. This procedure has many obvious advantages compared to those reported in the previous literature, including avoidance of the use of the expensive Pd catalysts, mild reaction conditions, high yields, and simplicity of the methodology.  相似文献   

14.
《中国化学会会志》2018,65(7):875-882
Hollow Fe3O4@TiO2‐NH2/Pd as a light‐weight, magnetically heterogeneous catalyst was successfully prepared, and characterized by using different techniques including X‐ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), vibrating sample magnetometer (VSM) measurements, and thermogravimetric analysis (TGA). Then this heterogeneous catalyst was tested in the Suzuki cross‐coupling reaction, and the results confirmed the success of this method. The catalyst could be separated easily using an external magnet and reused at least in five runs successfully without any appreciable loss in its catalytic activity.  相似文献   

15.
《中国化学快报》2020,31(12):3127-3130
Chemodynamic therapy (CDT) refers to generating hydroxyl radical (OH) in tumor sites via hydrogen peroxide (H2O2) catalyzed by transition metal ions in cancer cells under acidic environment. However, H2O2 content is not enough for effective CDT, although H2O2 content in cancer cells is higher than that of normal cells. Herein, we synthesized DOX@BSA-Cu NPs (nanoparticles) for effective CDT by providing enhanced content of H2O2 in cancer cells. The results proved Cu2+ in NPs could be reduced to Cu+ by glutathione (GSH) and effectively converted H2O2 to OH. Moreover, the loaded low-dose doxorubicin (DOX) in the NPs could improve the content of H2O2 and resulted in more efficient generation of OH in cancer cells. Thus DOX@BSA-Cu NPs exhibited higher cytotoxicity to cancer cells. This research may provide new ideas for the further studies on more effective Cu(II)-based CDT nanoagents.  相似文献   

16.
Frontal chromatography was used to study the adsorption dynamics and adsorption equilibrium of chlorobenzene on a 5% V2O5/Al2O3 catalyst at temperatures of 50 and 100°C. The mixed-diffusion model was employed to describe the elution curve and evaluate the effective coefficients of external mass exchange and diffusion within transport pores.  相似文献   

17.
An efficient and environmentally friendly method for the one-pot synthesis of 1,8-dioxo-decahydroacridines has been developed in the presence of Fe3O4 nanoparticles. The multicomponent reactions of aldehydes, dimedone and amines were carried out under solvent-free conditions to obtain some 1,8-dioxo-9-aryl-10-aryl-decahydroacridine derivatives. The present approach provides several advantages including high yields, short reaction times, little catalyst loading and facile catalyst separation.  相似文献   

18.
A green method was developed for the synthesis of CuFe2O4 magnetic nanoparticles using a Neem leave extract. The prepared nanoparticles with an average size of 19.7 nm were used as an effective catalyst for the oxidation of various aryl alkanes in moderate to excellent yields under solvent-free conditions. The catalyst was characterized by powder- XRD, SEM and TEM study. The key advantages of this protocol are simple preparation, a recyclable heterogeneous catalytic system, and benign reaction condition with good to excellent yields with high selectivity toward acid (42–87%).  相似文献   

19.
20.
In this paper, Fe3O4 nanoparticles were coated with 3-mercaptopropanoic acid (MPA) through a simple in-situ method and subsequently oxidized by H2O2/H2SO4 to obtain a novel acid magnetic catalyst (Fe3O4/SMPA). This catalyst exhibited high catalytic activity in the one-pot synthesis of different 3,4-dihydropyrimidin-2(1H)-ones under mild and solvent-free conditions, along with excellent level of reusability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号