首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent progress of quantum dot (QD) applications in single-molecule measurements are reviewed in this paper. Bright fluorescence and anti-photobleaching properties of QDs have explored the way to conduct long-time trajectory tracking of transmembrane proteins both in vitro and in vivo. Coupled with diversities of chemical and biochemical modifications of QD surfaces, their application fields are expanding to multidiscipline fields including imaging on the basis of a single molecule. Currently, molecular interactions and conformational changes on the QD surface can be detected at a single-molecule level. These expansions of application fields also involve toxicity problems in cells since most commercially available QDs consist of cadmium selenide or cadmium telluride, which are inherently toxic. For widespread applications of QDs including in vivo and therapeutic use in place of current organic fluorophore, cytotoxicity is discussed as well in this paper. 10.1002/tcr.20128.  相似文献   

2.
Quantum dots (QDs) with ultrahigh surface-to-volume ratio, abundant edge active sites, forceful quantum confinement and other remarkable physio-chemical properties, have garnered considerable research interest. MXene QDs, as an emerging member of them, have also attracted wide attention in the last six years, and shown great achievements in many fields. This critical review systematically summarizes the various methods for synthesizing MXene QDs. The characteristics and corresponding applications of various MXene QDs are also presented. The advantages and disadvantages of various synthetic methods, and the limitations of corresponding MXene QDs are compared and highlighted. Finally, the challenges and perspectives of synthesizing MXene QDs are proposed. We hope this review will enlighten researchers to the fabrication of more advancing and promising MXene-based QDs with proprietary properties in diverse applications.  相似文献   

3.
We review the syntheses, optical properties, and biological applications of cadmium selenide (CdSe) and cadmium selenide–zinc sulfide (CdSe–ZnS) quantum dots (QDs) and gold (Au) and silver (Ag) nanoparticles (NPs). Specifically, we selected the syntheses of QDs and Au and Ag NPs in aqueous and organic phases, size- and shape-dependent photoluminescence (PL) of QDs and plasmon of metal NPs, and their bioimaging applications. The PL properties of QDs are discussed with reference to their band gap structure and various electronic transitions, relations of PL and photoactivated PL with surface defects, and blinking of single QDs. Optical properties of Ag and Au NPs are discussed with reference to their size- and shape-dependent surface plasmon bands, electron dynamics and relaxation, and surface-enhanced Raman scattering (SERS). The bioimaging applications are discussed with reference to in vitro and in vivo imaging of live cells, and in vivo imaging of cancers, tumor vasculature, and lymph nodes. Other aspects of the review are in vivo deep tissue imaging, multiphoton excitation, NIR fluorescence and SERS imaging, and toxic effects of NPs and their clearance from the body. Figure Semiconductor quantum dots and metal nanoparticles have extensive applications, e.g., in vitro and in vivo bioimaging Tamitake Itoh and Abdulaziz Anas contributed equally to this article.  相似文献   

4.
Interest in metal telluride thin films as components in electronic devices has grown recently. This tutorial review describes the use of single-source precursors for the preparation of metal telluride materials by aerosol-assisted chemical vapour deposition (AACVD) and acquaints the reader with the basic techniques of materials characterization. The challenges in the design and synthesis of suitable precursors are discussed, focusing on metal complexes of the recently-developed imino-bis(diisopropylphosphine telluride) ligand. The generation of thin films and nanoplates of CdTe, Sb(2)Te(3) and In(2)Te(3) from these precursors are used as illustrative examples.  相似文献   

5.
针对当前水溶性量子点合成路线复杂、量子产率低的现状, 在无需N2保护的条件下, 采用简便的超声电化学方法快速合成了CdTe量子点前驱体;并对不同条件下制得的前驱体加热回流, 得到水溶性、高质量的近红外CdTe量子点。产物的形貌、结构和组成通过高分辨透射电子显微镜(HRTEM)、X-射线粉末衍射(XRD)等手段进行了表征。考察了超声电化学参数和回流条件对量子点荧光性质的影响。通过控制电流脉冲宽度、反应时间、反应温度等参数, 实现了CdTe量子点前驱体的可控制备;通过调节加热回流条件得到不同荧光发射波长的量子点;选用602 nm近红外发射波长的CdTe量子点标记了子宫颈癌细胞(Hela), 并采用共聚焦技术实现了肿瘤细胞的显微成像观察。和传统的量子点合成方法相比, 超声电化学方法具有合成路线简单、参数易调可控的特点;为高品质量子点的快速制备提供了新的思路, 拓展了超声电化学在纳米材料制备领域的应用。  相似文献   

6.
超声电化学快速制备近红外CdTe量子点与细胞成像   总被引:1,自引:0,他引:1  
针对当前水溶性量子点合成路线复杂、量子产率低的现状,在无需N2保护的条件下,采用简便的超声电化学方法快速合成了CdTe量子点前驱体;并对不同条件下制得的前驱体加热回流,得到水溶性、高质量的近红外CdTe量子点。产物的形貌、结构和组成通过高分辨透射电子显微镜(HRTEM)、X-射线粉末衍射(XRD)等手段进行了表征。考察了超声电化学参数和回流条件对量子点荧光性质的影响。通过控制电流脉冲宽度、反应时间、反应温度等参数,实现了CdTe量子点前驱体的可控制备;通过调节加热回流条件得到不同荧光发射波长的量子点;选用602 nm近红外发射波长的CdTe量子点标记了子宫颈癌细胞(Hela),并采用共聚焦技术实现了肿瘤细胞的显微成像观察。和传统的量子点合成方法相比,超声电化学方法具有合成路线简单、参数易调可控的特点;为高品质量子点的快速制备提供了新的思路,拓展了超声电化学在纳米材料制备领域的应用。  相似文献   

7.
We report the synthesis of a size series of copper indium selenide quantum dots (QDs) of various stoichiometries exhibiting photoluminescence (PL) from the red to near-infrared (NIR). The synthetic method is modular, and we have extended it to the synthesis of luminescent silver indium diselenide QDs. Previous reports on QDs luminescent in the NIR region have been primarily restricted to binary semiconductor systems, such as InAs, PbS, and CdTe. This work seeks to expand the availability of luminescent QD materials to ternary I-III-VI semiconductor systems.  相似文献   

8.
报道了一种以油胺-硒化氢复合物为前体的脂溶性CdSe量子点的制备方法. 将新制备的H2Se气体通入到油胺中, 得到油胺-硒化氢复合物, 以此复合物作为前体, 采用溶剂热合成法制备了CdSe量子点, 并采用荧光光谱、电镜以及X射线衍射对其进行了表征. 结果表明, CdSe量子点为立方晶型, 荧光半峰宽较窄(25~40 nm), 荧光量子产率可达23%, 并且荧光发射光谱从480到610 nm连续可调. 该方法无须使用三烷基膦, 是一种价廉环保的量子点制备方法.  相似文献   

9.
Semiconductor quantum dots (QDs) exhibit unique optical and photophysical properties. These features are implemented to develop optical molecular sensor systems. The review addresses the methods to functionalize the QDs with chemical capping layers that enable the use of the resulting hybrid structures for sensing, and discusses the photophysical mechanisms being applied in the different sensor systems. Different methods to design the chemically-modified QDs hybrid structures for sensing low-molecular-weight substrates, metal ions, anions and gases are presented. These include the functionalization of the QDs with ligands that bind ions, the modification of the QDs with substrate-specific ligands or receptor units, and the chemical modification of the QDs upon sensing. Specific emphasis is directed to describe the cooperative catalytic functions of the QDs in the sensing processes, and to address the function of sensing with logic-gate operations.  相似文献   

10.
Octadecylamine capped cadmium selenide quantum dots (CdSe QDs) were dispersed in the ferroelectric liquid crystal (FLC) FELIX 16/100. The QD dispersed FLC system was investigated on the planar anchored cell. Addition of specific concentration of the QDs in the pure FLC induces a new relaxation mode along with the Goldstone relaxation mode. QDs assisted quantum fluctuations are probably responsible for the existence of this new relaxation mode in the QDs dispersed FLC system. The ionic contaminations associated with the FLC materials were trapped on the surface of QDs due to the ion-trapping character of QDs. The trapping of ionic contaminations was confirmed by the a.c. conductivity measurement. The physical properties of the pure and dispersed FLC were carried out as a function of doping concentration of QDs, temperature and frequency.  相似文献   

11.
Several studies suggested that the cytotoxic effects of quantum dots (QDs) may be mediated by cadmium ions (Cd2+) released from the QDs cores. The objective of this work was to assess the intracellular Cd2+ concentration in human breast cancer MCF-7 cells treated with cadmium telluride (CdTe) and core/shell cadmium selenide/zinc sulfide (CdSe/ZnS) nanoparticles capped with mercaptopropionic acid (MPA), cysteamine (Cys), or N-acetylcysteine (NAC) conjugated to cysteamine. The Cd2+ concentration determined by a Cd2+-specific cellular assay was below the assay detection limit (<5 nM) in cells treated with CdSe/ZnS QDs, while in cells incubated with CdTe QDs, it ranged from approximately 30 to 150 nM, depending on the capping molecule. A cell viability assay revealed that CdSe/ZnS QDs were nontoxic, whereas the CdTe QDs were cytotoxic. However, for the various CdTe QD samples, there was no dose-dependent correlation between cell viability and intracellular [Cd2+], implying that their cytotoxicity cannot be attributed solely to the toxic effect of free Cd2+. Confocal laser scanning microscopy of CdTe QDs-treated cells imaged with organelle-specific dyes revealed significant lysosomal damage attributable to the presence of Cd2+ and of reactive oxygen species (ROS), which can be formed via Cd2+-specific cellular pathways and/or via CdTe-triggered photoxidative processes involving singlet oxygen or electron transfer from excited QDs to oxygen. In summary, CdTe QDs induce cell death via mechanisms involving both Cd2+ and ROS accompanied by lysosomal enlargement and intracellular redistribution.  相似文献   

12.
We demonstrate the synthesis of copper selenide quantum dots (QDs) by element directed, inexpensive, straight forward wet chemical method which is free from any surfactant or template. Copper selenide QDs have been synthesized by elemental copper and selenium in the presence of ethylene glycol, hydrazine hydrate, and a defined amount of water at 70 °C within 8 h. The product is in strong quantum confinement regime, phase analysis, purity and morphology of the product has been well studied by X-ray diffraction (XRD), UV–Visible spectroscopy (UV–Vis), Photo-luminescent spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), High resolution transmission electron microscopy (HRTEM), and by Atomic force microscopy (AFM) techniques. The absorption and photoluminescence studies display large “blue shift”. TEM and HRTEM analyses revealed that the QDs diameters are in the range 2–5 nm. Due to the quantum confinement effect copper selenide QDs could be potential building blocks to construct functional devices and solar cell. The possible mechanism is also discussed.  相似文献   

13.
14.
A method that does not employ hot-injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with zinc blende structure. In this environmentally benign synthetic route, which uses less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and thus their optical properties can be manipulated by changing the microwave reaction conditions. The QDs were characterized by XRD, TEM, UV/Vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot-injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. Possible applications of the CdSe QDs were assessed by deposition on TiO(2) films.  相似文献   

15.
I–III–VI multinary semiconductors, which have low toxicity, are attracting much attention as quantum dot (QD) materials for replacing conventional binary semiconductors that contain highly toxic heavy metals, Cd and Pb. Recently, the inherent design flexibility of multinary QDs has also been attracting attention, and optoelectronic property control has been demonstrated in many ways. Besides size control, the electronic and optical properties of multinary QDs can be changed by tuning the chemical composition with various methods including alloying with other semiconductors and deviation from stoichiometry. Due to significant progress in synthetic methods, the quality of such multinary QDs has been improved to a level similar to that of Cd-based binary QDs. Specifically, increased photoluminescence quantum yield and recently narrowed linewidth have led to new application fields for multinary QDs. In this review, a historical overview of the solution-phase synthesis of I–III–VI QDs is provided and the development of strategies for better control of optoelectronic properties, i.e., electronic structures, energy gap, optical absorption profiles, and photoluminescence feature, is discussed. In addition, applications of these QDs to luminescent devices and light energy conversion systems are described. The performance of prepared devices can be improved by controlling the optical properties and electronic structures of QDs by changing their size and composition. Clarification of the unique features of I–III–VI QDs in detail will be the base for further development of novel applications by utilizing the complexity of multinary QDs.  相似文献   

16.
The ionic polarizable ability parameter is definedasgi. The connectivity index of the polarizable abiltym G is introduced fromgiand based on the adjacency matrix of molecular topological graph. Because different ions should not have the same oxidation number or the same main quantum numbers, 0G、1G amongm G have good structural selection for inorganic molecules. The 0G and 1G of 64 alkali and alkaline-earth metal oxide halide, sulfide, selenide and telluride are calculated. The result shows: the 0G and 1G all have a positive correlation with the atomic number and size of molecules, but have a negative correlation with the atomic ploarizable ability in molecules. Since the standard entropy of compound increases with the atomic number of compounds an decreases with the atomic ploarizable ability, the standard entropies of compounds have a positive correlation with the 0G and 1G of compounds. The standard entropies of 64 alkali and alkaline-earth metal oxide, halide sulfide and selenide are correlated with the0Gand1Gof these compounds.  相似文献   

17.
Cadmium telluride quantum dots (QDs) were prepared and coated with cysteamine using ultrasonic irradiation. The QDs were characterized by fluorescence spectroscopy, UV-vis absorption spectra, X-ray diffraction and infrared spectroscopy. The QDs possess a quantum yield as high as 46% and a quite narrow emission band (full width at half maximum of 38 nm). The fluorescence of these QDs is quenched by bisphenol A (BPA), and quenching can be described by a Stern-Volmer equation with correlation coefficient of 0.998. These findings resulted in a simple and rapid technique for determination of BPA that was applied to its determination in feeding bottles.  相似文献   

18.
Ternary quantum dots (QDs) are novel nanomaterials that can be used in chemical analysis due their unique physicochemical and spectroscopic properties. These properties are size-dependent and can be adjusted in the synthetic protocol modifying the reaction medium, time, source of heat, and the ligand used for stabilization. In the last decade, several spectroscopic methods have been developed for the analysis of organic and inorganic analytes in biological, drug, environmental, and food samples, in which different sensing schemes have been applied using ternary quantum dots. This review addresses the different synthetic approaches of ternary quantum dots, the sensing mechanisms involved in the analyte detection, and the predominant areas in which these nanomaterials are used.  相似文献   

19.
炭-/石墨烯量子点作为新兴的炭纳米材料,因具有独特的小尺寸效应和丰富的边缘活性位点而在高性能超级电容器电极材料的研发方面展现出巨大潜力。针对目前炭-/石墨烯量子点在超级电容器电极材料方面的应用优势和存在的关键问题,本文以炭-/石墨烯量子点、量子点/导电炭复合材料、量子点/金属氧化物复合材料、量子点/导电聚合物复合材料以及量子点衍生炭这些电极材料为脉络,梳理了近年来该领域的发展状况,尝试阐释炭-/石墨烯量子点在电极材料、复合材料和衍生炭电极材料中所起到的关键作用,最后对炭-/石墨烯量子点电极材料的发展进行了展望。本综述以期为炭-/石墨烯量子点基电极材料的研究提供一定参考和依据。  相似文献   

20.
A relatively sensitive, specific, and photostable method for the detection of cytokeratin of cancer cells via conjugation with cadmium telluride quantum dots(CdTe QDs) was described. Water soluble CdTe QDs were conjugated to anti-pan-cytokeratin(CK) monoclonal antibody(MAb) through coupling reagent [1-ethyl-3-(3-dimethyla- mino propyl)carbodiimide, EDC] and the conjugates were purified by dialysis. The expression of pan CK protein in HepG2 cells was observed by immunocytochemistry and direct immunofluoresce...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号