首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anionic polymerization of methacrylate monomers has been investigated with lithium dialkylamides as initiators in THF and toluene, respectively. Theoretical arguments and previous studies of mixed aggregates of lithiated organic compounds support the complexity of these systems. Lithium diisopropylamide (LDA) shows the highest initiation efficiency (e.g., f = 75% in THF at −78°C). Interestingly enough, lithium chloride has a remarkable beneficial effect on the methacrylates polymerization in THF at −78°C, due to the formation of 1 : 1 mixed dimer with LDA, which promotes a well-controlled anionic polymerization (Mw/Mn = 1.05) with a high initiation efficiency (94%). The less bulky lithium–diethylamide (LDEA) is much less efficient (f = 26%), essentially as a result of some associated “dormant” species and side reactions on the carbonyl group of MMA. Although various types of ligands have been screened, no remarkable improvement of LDEA efficiency has been observed. Lithium bis(trimethylsilyl)amide (LTMSA) has also been used to increase the steric hindrance of the initiator. This compound is, however, unable to initiate the methacrylates polymerization, more likely because of a too low basicity and a too strong Li—N bond. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3637–3644, 1997  相似文献   

2.
3.
The kinetics of chain polymerization is investigated for the case of a complicating side reaction. In addition to the polymerization reaction, Ai + MAi+1, there is a reversible side reaction, Ai + QBi. Initiation is assumed to be instantaneous. The monomer concentration M, and the concentration of the reacting species Q, are assumed to be constant. The reaction kinetics are solved exactly, yielding the distribution of living and dormant polymer, as well as the molecular weight distribution, as explicit functions of the reaction rate constants and the time. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1711–1725, 1997  相似文献   

4.
陈枫  傅强 《高分子科学》2015,33(8):1176-1185
Poly(bisphenol A carbonate) (BPA-PC) was post-polymerized by solid-state polymerization (SSP) after supercritical CO2-induced crystallization in low molecular weight particles prepolymerized via melt transesterification reaction. The effects of the crystallization conditions on melting behavior and SSP of BPA-PC were investigated with differential scanning calorimetry (DSC), Ubbelohde viscosity method and gel permeation chromatography (GPC). The reaction kinetics of the SSP of crystallized prepolymers was studied as a function of reaction temperatures for various reaction periods. As a result, the viscosity average molecular weight of BPA-PC particles (2 mm) increased from 1.9 × 104 g/mol to 2.8 × 104 g/mol after SSP. More importantly, the significantly enhanced thermal stability and mechanical properties of solid-state polymerized BPA-PC, compared with those of melt transesterification polymerized BPA-PC with the same molecular weight, can be ascribed to the substantial avoidance of undergoing high temperature during polymerization. Our work provides a useful method to obtain practical product of BPA-PC with high quality and high molecular weight.  相似文献   

5.
High molecular weight polyacrylonitrile (PAN) with low dispersity has been successfully synthesized utilizing reversible addition‐fragmentation chain transfer (RAFT) polymerization. A comprehensive study was performed to understand the influence of reaction temperature, RAFT agent structure, and [M]0:[CTA]0[I]0 on the polymerization kinetics, molecular weight, and dispersity. Enhanced control is attributed to reduction of side reactions by conducting the polymerization at lower temperature, and optimizing the radical exchange between active and dormant states via appropriate selection of RAFT agent and initiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 553–562  相似文献   

6.
A hybrid polymerization system that combines the fast reaction kinetics of conventional free radical polymerization and the control of molecular weight and distribution afforded by ATRP has been developed. High‐free radical initiator concentrations in the range of 0.1–0.2 M were used in combination with a low concentration of ATRP catalyst. Conversions higher than 90% were achieved with ATRP catalyst concentrations of less than 20 ppm within 2 h for the hybrid ATRP system as compared with ATRPs where achieving such conversions would take up to 24 h. These reaction conditions lead to living polymerizations where polymer molecular weight increases linearly with monomer conversion. As in living polymerization and despite the fast rates and low ATRP catalyst concentrations, the polydispersity of the produced polymer remained below 1.30. Chain extension experiments from a synthesized macroinitiator were successful, which demonstrate the living characteristics of the hybrid ATRP process. Catalyst concentrations as low as 16 ppm were found to effectively mediate the growth of over 100 polymer chains per catalytic center, whereas at the same time negating the need for post polymerization purification given the low‐catalyst concentration. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2294–2301, 2010  相似文献   

7.
为了获得高性能的聚丙烯腈(PAN)基碳纤维,采用高分子量PAN共聚物进行纺丝是最有效的解决途径。本文主要从聚合反应机理、共聚单体类型、引发剂种类、混合溶剂选择以及聚合工艺条件等五个方面出发,阐述了混合溶剂沉淀聚合制备高分子量PAN的工艺特点和研究现状。该工艺采用水/有机溶剂混合体系为反应介质,兼具均相溶液聚合和非均相聚合的双重优点,能够合成出高分子量且内部结构疏松的PAN共聚物,是制备高性能PAN前驱体的重要合成方法。  相似文献   

8.
High molecular weight polystyrene (PS) was synthesized by ATRP. Under atmospheric pressure (1 bar), PS with Mn up to 200,000 was prepared using either ARGET or ICAR ATRP. Under high pressure (6 kbar), higher molecular weight PS could be obtained due to accelerated radical propagation and diminished radical termination in polymerization of styrene. Therefore, it was possible to synthesize PS with Mn > 1,000,000 and Mw/Mn < 1.25 using AGET ATRP under a pressure of 6 kbar at room temperature. This is the highest molecular weight linear PS prepared by a controlled radical polymerization.  相似文献   

9.
A mathematical model was developed for the computation of the dynamic evolution of molecular weight distributions (MWDs) during nonlinear emulsion polymerization reactions. To allow the direct computation of the whole MWD, an adaptive orthogonal collocation technique was applied. The model was validated with experimental methyl methacrylate/butylacrylate (BuA) semicontinuous and vinyl acrylate (VA)/Veova10 continuous emulsion polymerization results. Both systems considered introduce significant chain‐transfer reactions to polymer chains as a result of the presence of BuA and VA, respectively. The model developed was able to represent quite properly the kinetics and MWD of polymer samples during emulsion polymerizations. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3513–3528, 2001  相似文献   

10.
Polymer-induced flocculation in which the size of polymer molecules is much greater than that of colloidal particles is investigated. A dynamic analysis is conducted which takes the transient behaviors of the adsorption of particles to a polymer molecule and the particle-particle interactions into account. We show that the number of particles adsorbed to a polymer molecule follows approximately a binomial distribution. An approximate expression for the degree of flocculation of the system under consideration is presented.  相似文献   

11.
Controlled and homogeneous free-radical polymerization of acrylamide(AM) in aqueous phase was realized by using S,S'-bis(α,α'-dimethyl-α'-acetic acid)-trithiocarbonate as a reversible addition-fragmentation transfer(RAFT) agent. Linear increases in molecular weight with conversion and narrow molecular weight distribution were observed for polyacrylamide(PAM) throughout the polymerization. By this method, PAMs with controlled molecular weight(up to 1.0 × 10~6) and narrow molecular weight distribution(M_w/M_n 1.2) were prepared. This study provides an effective method for synthesis of PAMs with narrow molecular weight distribution under environmentally friendly conditions.  相似文献   

12.
Gas-phase polymerizations have been executed at different temperatures, pressures, and hydrogen concentrations using Me2Si[Ind]2ZrCl2 / methylaluminoxane / SiO2(Pennsylvania Quarts) as a catalyst. The reaction rate curves have been described by a kinetic model, which takes into account the initially increasing polymerization rate. The monomer concentration in the polymer has been calculated with the Flory–Huggins equation. The kinetic parameters have been determined by fitting the reaction rate curves with the model. At high temperatures, pressures, and hydrogen concentrations a runaway on particle scale may occur leading to reduced polymer yields. The molecular weight and molecular weight distribution of the polymer samples could be described by a “two-site model.” At constant temperature the chain-transfer probability of sites 1 and 2 depends only on the hydrogen concentration divided by the monomer concentration. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 500–513, 2001  相似文献   

13.
The effect of polymerization conditions on the molecular weight of polystyrene grafted onto silica obtained from the radical graft polymerization initiated by azo and peroxyester groups introduced onto the surface was investigated. The molecular weight of polystyrene grafted onto silica obtained from the radical graft polymerization initiated by surface azo and peroxyester groups decreased with decreasing monomer concentration and polymerization temperature. The molecular weight of polystyrene was found to be controlled to some extent by the addition of a chain transfer agent. The molecular weight of grafted chain on silica surface obtained from the graft polymerization initiated by surface radicals formed by photodecomposition of azo groups was considerably smaller than that by thermal decomposition. The number of grafted polystyrene in photopolymeriztion, however, was much larger than that in thermal polymerization. These results are explained by the blocking of surface radicals formed on the silica surface by previously grafted polymer chain: when the decomposition of surface azo and peroxyester groups proceed instantaneously at the initial stage of the polymerization, the number of grafted polymer chains increased.  相似文献   

14.
A Monte Carlo simulation model for the kinetics of emulsion polymerization is proposed. In the present model, the formation of each polymer molecule is simulated by the use of only a couple of probability functions; therefore, the calculation can be handled well even on personal computers. It is straightforward to account for virtually any kinetic event, such as the desorption of oligomeric radicals and chain length dependence of kinetic parameters, and as a consequence very detailed information such as the full distributions of the dead polymer molecular weights and the macroradicals among various polymer particles can be obtained. When bimolecular terminations are the dominant chain stoppage mechanism, the instantaneous molecular weight distribution (produced in a very small time interval) becomes broader than that for homogeneous polymerizations due to a higher possibility that short and long polymer radicals react with each other if bimolecular reactions are fast enough. The increase in the polydispersity of the MWD is fairly large, especially when bimolecular termination by disproportionation is significant; however, the gel permeation chromatography (GPC) may not be a suitable analytical technique to detect such broadening since oligomeric peaks may not be observed in the elution curve. The present simulation method provides greater insight into the complicated phenomena of emulsion polymerizations. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
16.
FeCl3 coordinated by isophthalic acid was first used as a catalyst in the azobisisobutyronitrile‐initiated reverse atom transfer radical polymerization of acrylonitrile. N,N‐Dimethylformamide was used as a solvent to improve the solubility of the ligand. An FeCl3‐to‐isophthalic acid ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided rather a rapid reaction rate. The effects of different solvents on the polymerization of acrylonitrile were also investigated. The rate of the polymerization in N,N‐dimethylformamide was faster than that in propylene carbonate and toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in N,N‐dimethylformamide. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 59.9 kJ mol?1. Reverse atom transfer radical polymerization was first used to successfully synthesize acrylonitrile polymers with a molecular weight higher than 80,000 and a narrow polydispersity as low as 1.22. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 219–225, 2006  相似文献   

17.
The anionic polymerization of methyl methacrylate in toluene at −78 °C with lithium amides of various secondary amines (diisopropylamine, N‐isopropylaniline, Nn‐butylaniline, indoline, and N‐ethyl‐o‐toluidine) as initiators was studied. The tacticity of the resulting poly(methyl methacrylate)s (PMMAs) was dependent on the kind of secondary amine, and highly isotactic PMMAs (91–93% mm) were obtained when lithium amides of N‐isopropylaniline and Nn‐butylaniline were employed. The isotacticity of the PMMAs further increased up to 98% mm with initiating systems composed of the lithium amides, n‐butyllithium, and transition‐metal halides (WCl6, MoCl5, and NbCl5). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4405–4411, 2005  相似文献   

18.
In this paper, the polymerization of styrene initiated by potassium (K)-tetrahydrofuran (THF)-graphite intercalation compound (GIC) (K-THF-GIC) was studied. The mechanism of the polymerization was determined to be anionic polymerization according to its characteristics. The effect of the concentration of the initiator and monomer was studied. It was found that the polymerization mainly occurred on the surface and edge of the intercalated graphite. It was also shown that the polarity of solvent has little effect on the polymerization yield in this system.  相似文献   

19.
A novel bifunctional vinyl‐terminated polyurethane macromonomer was applied to the dispersion polymerization of styrene in ethanol. Monodisperse polystyrene (PS) microspheres were successfully obtained above 15 wt % of macromonomer relative to styrene. The steep slope from the reduction of the average particle size reveals that the macromonomer can efficiently stabilize higher surface area of the particles when compared with a conventional stabilizer, poly(N‐vinylpyrrolidone). The stable and monodisperse PS microspheres having the weight‐average diameter of 1.2 μm and a good uniformity of 1.01 were obtained with 20 wt % polyurethane macromonomer. The grafting ratio of the PS calculated from 1H NMR spectra linearly increased up to 0.048 with 20 wt % of the macromonomer. In addition, the high molecular weights (501,300 g/mol) of PS with increased glass transition and enhanced thermal degradation temperature were obtained. Thus, these results suggest that the bifunctional vinyl‐terminated polyurethane macromonomer acts as a reactive stabilizer, which gives polyurethane‐grafted PS with a high molecular weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3566–3573, 2005  相似文献   

20.
The evolution of molecular weight distributions (MWDs) with monomer conversion in the catalytic chain transfer (CCT) polymerization of methyl methacrylate at 60 °C is investigated by simulation (via the program package PREDICI®) and experiment. A Co(III)‐based complex is used as the precursor for the CCT agent, which is formed in situ by initiator‐derived (2,2′‐azobisisobutyronitrile) radicals to yield the catalytically active Co(II) species. The small shifts seen in the MWD toward lower molecular weights with increasing monomer conversion are shown to be of the same order of magnitude as the associated changes in the MWD in non‐CCT controlled free‐radical polymerization, indicating that no significant change in the MWD with monomer conversion is associated with the CCT process. These results are compared to the evolution of MWDs in conventional chain transfer polymerizations with thiols as transfer agents. A clear shift toward higher molecular weights is seen with increasing monomer conversion, indicating disparate rates of thiol and monomer consumption. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3303–3312, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号