首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李正华  李翔 《物理学报》2014,63(17):178503-178503
近年来磁力显微镜(magnetic force microscopy,MFM)对动态磁场信号的测量与分析由于其特殊的工业要求和重要用途而受到广泛关注,本文旨在利用交变磁力对磁性探针的周期性调制发展一种交变力磁力显微镜技术,为磁信息存储工业等重要领域关键技术的发展提供新型的有力的工具.与目前标准MFM采用的设计思路不同,本文的关键在于合理利用MFM频率调制机理,优化设计MFM磁性探针,并且引入动态信号处理模块,实现对交变磁场信号的MFM成像.为达到这些目的,需要从理论上研究MFM探针的频率调制机理,并由实验上设计出动态信号提取模块,二者相辅结合优化设计出具有动态信号测试和分析能力的交变力磁力显微镜技术,由此来测量和解释纳米尺度磁畴结构.  相似文献   

2.
Highly ordered composite nanowires with multilayer Ni/Cu and NiFe/Cu have been fabricated by pulsed electrodeposition into nanoporous alumina membrane. The diameter of wires can be easily varied by pore size of alumina, ranging from 30 to 100 nm. The applied potential and the duration of each potential square pulse determine the thickness of the metal layers. The nanowires have been characterized by transmission electron microscopy (TEM), magnetic force microscopy (MFM), and vibrating sample magnetometer (VSM) measurements. The MFM images indicate that every ferromagnetic layer separated by Cu layer was present as single isolated domain-like magnet. This technique has potential use in the measurement and application of magnetic nanodevices.  相似文献   

3.
In situ magnetic hysteresis measurements of magnetic tips in a magnetic force microscope (MFM) are demonstrated using alternating gradient force magnetometry. The measured magnetic moments of MFM tips are estimated in the range from 10−6 to 10−5 emu by this technique and the whole MFM tips in cantilevers are considered to be measured from the value of measured magnetic moments. The relationship between the magnetic hysteresis loops of MFM tips and those of coated magnetic films is discussed.  相似文献   

4.
An algorithm for computer simulation of images obtained by magnetic force microscopy (MFM) is suggested. It is based on the Brown formalism and takes into account the shapes and the magnetic properties of the MFM tip and sample studied. The robustness and efficiency of the algorithm are tested by simulating the MFM image of a point magnetic dipole for the case where the tip is approximated by a nonmagnetic truncated cone covered by a thin uniformly magnetized layer. From the computer simulation of the MFM images of the dipole, the optimum parameters of the MFM probe are obtained.  相似文献   

5.
In this work we investigate possible ferromagnetic order on the graphite surface by using magnetic force microscopy (MFM). Our data show that the tip-sample interaction along the steps is independent of an external magnetic field. Moreover, by combining kelvin probe force microscopy and MFM, we are able to separate the electrostatic and magnetic interactions along the steps obtaining an upper bound for the magnetic force gradient of 16 μN/m. Our experiments suggest the absence of ferromagnetic signal in graphite at room temperature.  相似文献   

6.
Magnetic microstructures of a high coercivity Nd-Fe-B sintered magnet in remanent and incomplete thermal demagnetization states have been revealed by using magnetic force microscopy (MFM) with high coercivity tips. MFM results indicate that specimens in a remanent state are single domain and their magnetizations align with the direction of the magnetizing field. The evolution of the magnetic domains with annealing temperatures shows that the thermal demagnetization process consists of four stages. Nd-Fe-B should be heat-treated at about 120-170 °C to make its magnetic state stable before practical applications.  相似文献   

7.
Bit‐patterned media at one terabit‐per‐square‐inch (Tb/in2) recording density require a feature size of about 12 nm. The fabrication and characterization of such magnetic nanostructures is still a challenge. In this Letter, we show that magnetic dots can be resolved at 10 nm spacing using magnetic force microscopy (MFM) tips coated with a magnetic film possessing a perpendicular magnetic anisotropy (PMA). Compared to MFM tips with no special magnetic anisotropy, MFM tips with PMA can resolve the bits clearly, because of a smaller magnetic interaction volume, enabling a simple technique for characterizing fine magnetic nanostructures. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.  相似文献   

9.
A specific technique of numerical treatment of atomic force microscopy (AFM) and magnetic force microscopy (MFM) signal has been developed to enhance the quality of raw images, in order both to improve their contrast and to gain better insight on the sample topography and on the local arrangement of the magnetisation vector. Basically, the technique consists in computing the optimum conformal transformation that allows one to superimpose two AFM images of the same area, acquired performing subsequent scans whose fast scan axis were mutually perpendicular, and applying the inverse transform to the second image. After MFM image superposition, the two datasets were either summed or subtracted, in order to improve the magnetic contrast. Computations have been done in a Matlab® workspace with the help of Image Processing Toolbox 4.2. Improved MFM images obtained on both dots and antidots thin evaporated Co arrays in the demagnetised state (after performing alternate field demagnetisation parallel and perpendicular to the array plane) have been interpreted. Samples consisting of large-size patterns (1×1 mm) of circular dots/antidots with square/hexagonal lattices and minimum diameters of 1 μm were prepared by optical lithography. The magnetic film thickness was chosen depending on resist thickness, and varied between 25 and 150 nm, with a fixed ratio 1:4 between metal/resist film thickness. MFM was exploited to obtain images of either intra-dot or inter-antidot magnetic structures.  相似文献   

10.
Magnetic force microscopy (MFM) methods were applied to investigate the peculiarities of magnetization distribution in elliptical 400×600×27 nm Co particles. Reversible transitions between the uniform and vortex states under inhomogeneous magnetic field of MFM probe were observed. Possibility to control the chirality of a magnetic vortex in these particles by MFM probe manipulation was shown.  相似文献   

11.
The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni80Fe20) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as ∼21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. a weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic force microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.  相似文献   

12.
The static magnetic structure of a single shape-defective Ni80Fe20 nanowire has been investigated by magnetic force microscopy (MFM). The result shows that defects of the shape of the nanowire have an effect on the magnetic state of the nanowire. In order to check the influence of defects of the shape on the magnetic state, a micromagnetic simulation and a MFM image simulated computation are introduced. Two model systems are studied: (I) model?I: no defects of the shape is present and (II) model?II: the defects of the shape are introduced into the ends of the nanowire. The simulated computation result of model?II is in good agreement with experimental results for the single Ni80Fe20 nanowire. It may have important significance for guiding in sample preparation and application.  相似文献   

13.
Magnetic force microscopy (MFM) was used to investigate the magnetization reversal process in a patterned strip wire of permalloy thin film. The magnitude of the phase-shift of tapping mode MFM changed with the varying interactive magnetic force between the magnetic tip and the sample. By analyzing the change in values of the phase-shift, the behaviors of magnetization reversal of different local regions in a patterned strip wire can be quantitatively analyzed. The intensity of the phase-shift in the wider end is stronger than that in the narrower one. In contrast, due to a strong anisotropic effect, the coercive force in the narrower end (9 Oe) is larger than that in the wider one (8 Oe). Therefore, the Hc in the neck section could become strongly affected by the competition of the head-to-tail magnetic configurations in the two parts of the strip wire, and this results in a small Hc in the neck section. In addition, in a simple neck shape connection in a strip NiFe wire, a single domain configuration can be easily changed to a two single domain magnetic configuration.  相似文献   

14.
Magnetic force microscopy applied in magnetic data storage technology   总被引:1,自引:0,他引:1  
Microstructured thin-film elements with critical dimensions of 1 μm or less play an increasingly important role in magnetic components for information technology applications. Devices that are directly based on such microstructures are key components in magnetoelectronics for storage and sensor applications as well as modern concepts which are likely to substitute today’s hard disk drives. Basic research on magnetic materials as well as industrial applications create an increasing demand for high-resolution magnetic imaging methods. One such method is magnetic force microscopy (MFM). In spite of considerable achievements, MFM also has some serious shortcomings, which have not been overcome to date. Under normal circumstances, the method yields only qualitative information about the magnetic object and it is difficult to improve the resolution to values below 100 nm. In this paper, we will report on advanced MFM probe preparation, based on electron beam methods, and discuss the possibilities for batch fabrication of such advanced MFM tips. We show that the advanced probes allow high-resolution imaging of fine magnetic structures within thin-film permalloy elements without perturbing them. Additionally, we present high-frequency MFM measurements on a hard disk write head. Received: 2 September 2002 / Accepted: 2 September 2002 / Published online: 5 March 2003 RID="*" ID="*"Corresponding author. Fax: +49-681/302-3790, E-mail: m.koblischka@mx.uni-saarland.de  相似文献   

15.
Magnetic force microscopy (MFM) can be used to image current distributions in current leads of sub-micron dimensions. Here we present a systematic study about the spatial and force resolution of such currents. In the case of force resolution, we studied the least measurable magnetic force of MFM for different sample currents. The analysis of images from parallel Al conducting plates are combined with those from force-distance curves and finite element calculations. Several interacting regimes between the magnetic tip and the currents are found and interpreted. It is shown that model calculations are necessary even for qualitative image interpretation. Then spatial resolution in the range of 100nm can well be obtained and quantitative studies of current distribution on widths of 10nm resolution are possible in special cases. The approach is demonstrated in imaging the current distribution in superconducting Bi2Sr2CaCu2O x single crystals. Presented at the VIII-th Symposium on Surface Physics, Třešt’ Castle, Czech Republic, June 28 – July 2, 1999. This work was supported in part by the Swiss Priority Program on Materials. The authors benefited greatly from discussions with D.A. Bonnell, B. Huey and C. Rüegg.  相似文献   

16.
We investigated remagnetization processes in ferromagnetic nanoparticles under inhomogeneous magnetic field induced by the tip of magnetic force microscope (MFM) in both theoretical and empirical ways. Systematic MFM observations were carried out on arrays of submicron-sized elliptical ferromagnetic particles of Co and FeCr with different sizes and periods. It clearly reveals the distribution of remanent magnetization and processes of local remagnetization of individual ferromagnetic particles. Modeling of remagnetization processes in ferromagnetic nanoparticles under magnetic field induced by MFM probe was performed on the base of Landau–Lifshitz–Gilbert equation for magnetization. MFM-induced inhomogeneous magnetic field is very effective to control the magnetic state of individual ferromagnetic nanoparticles as well as to create different distribution of magnetic field in array of ferromagnetic nanoparticles.  相似文献   

17.
Fast and efficient software tools previously developed in image processing were adapted to the analysis of raw datasets consisting of multiple stacks of images taken on a sample interacting with a measuring instrument and submitted to the effect of an external parameter. Magnetic force microscopy (MFM), a follow-up of atomic force microscopy (AFM), was selected as a first testbed example. In MFM, a specifically developed ferromagnetic scanning tip probes the stray magnetic field generated from a ferromagnetic specimen. Raw scanning probe images taken on soft patterned magnetic materials and continuous thin films were used, together with synthetic patterns exploited to assess the absolute performance ability of the proposed texture analysis tools. In this case, the parameter affecting the sample-instrument interaction is the applied magnetic field. The application discussed here is just one among the many possible, including, e.g., real-time microscopy images (both optical and electronic) taken during heat treatments, phase transformations and so on. Basically any image exhibiting a texture with a characteristic spatial or angular dependence could be processed by the proposed method. Standard imaging tools such as texture mapping and novel data representation schemes such as texture analysis, feature extraction and classification are discussed. A magnetic texture stability diagram will be presented as an original output of the entropic analysis on MFM datasets.  相似文献   

18.
The physical properties of magnetic domain walls and electrical conductivity of permalloy thin films under external magnetic fields were studied. Using a magnetic force microscope (MFM), we observed the variation of domain configurations with the change of applied magnetic field for different film thicknesses of 245, 320, and 415 nm. A superconducting quantum interference device (SQUID) was exploited to measure the magnetization loop for the applied magnetic field either parallel or perpendicular to the normal direction of the surface. We also found that the resistivity increases significantly as the electrical current conduction changed from parallel to perpendicular to the domain walls.  相似文献   

19.
The properties of a magnetic force microscopy (MFM) tip are very important for high-resolution magnetic imaging. In this work, micromagnetic models of tips are set up to study the effect of tip-coating microstructure, especially the randomness of anisotropy on tip edge and tip end, on the resolution of MFM. The effective coating height and the resolution potential of tips with various microstructures and magnetic properties have been characterized by investigating the obtained signals from high-density continuous granular thin film disk media with a bit size of 8×16 nm2 and bit-patterned media with a pattern period p of 50 nm. The magnetic moment distribution at the tip end should be perpendicular to the sample to realize a ‘magnetically sharp’ tip, which explains further the improved resolution in the recent experimental reports. Tips with well-controlled grain structure and magnetic anisotropy of coating materials can be applied to both high-density thin film disk media and bit-patterned media.  相似文献   

20.
The advantage of the CoFe-coated carbon nanotube (CNT) probes in a magnetic force microscope (MFM) is verified on in-plane magnetized soft magnetic materials. CoFe-coated CNT, standard and low-moment MFM probes were used to observe closure domains in square and rectangular Permalloy elements. The perturbative effect of the CNT-MFM probe was far less than that of a standard MFM probe. Domain walls were clearly observed as a pair of dark and bright lines which was in agreement with the micromagnetic simulations. The vortex core was also clearly observed using the CNT-MFM probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号