首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reports on a study of the luminescence of lithium borate crystals (Li6Gd(BO3)3 doped by Eu3+ and Ce3+ ions, Li5.7Mg0.15Gd(BO3)3: Eu, and Li6Eu(BO3)3) initiated by selective excitation by synchrotron radiation at excitation energies of 3.7–27 eV at 10 and 290 K. Efficient energy transfer between the rare-earth ions Gd3+ → Ce3+ and Gd3+ → Eu3+ was found to proceed by the resonance mechanism, as well as by electron-hole recombination. Fast decay kinetics of luminescence of the Ce3+ activator centers was studied under intracenter photoexcitation and excitation in the interband transition region. The mechanisms involved in luminescence excitation and radiative relaxation of electronic states of rare-earth ions are analyzed, and the energy transfer processes operating in these crystals are discussed.  相似文献   

2.
杨帆  潘尚可  丁栋舟  吴云涛  任国浩 《物理学报》2011,60(11):113301-113301
文章用提拉法生长出Li6Gd(BO3)3:Ce晶体,并对其光谱性能与发光过程进行了探索. 借助于真空紫外-紫外透过光谱测试,发现晶体的透过光谱中存在Ce3+离子和Gd3+的特征吸收峰,同时还存在与Ce4+离子相关的电荷迁移带. 对晶体的真空紫外-紫外激发发射光谱进行研究发现,在晶体存在着Ce3+离子的5d→4f辐射跃迁发光与Gd3+离子的4f→4f辐射跃迁发光,而且存在着Gd3+→Ce3+之间的能量传递. 对Li6Gd(BO3)3:Ce晶体的X射线与γ射线激发发射光谱研究可知,晶体在高能射线激发下的闪烁光主要是Ce3+离子的发光. 关键词: 6Gd(BO3)3:Ce晶体')" href="#">Li6Gd(BO3)3:Ce晶体 真空紫外-紫外透过光谱 真空紫外-紫外激发发射光谱 能量传递  相似文献   

3.
(Gd1?xEux)(BO2)3 (0≤x≤1) phosphors are synthesized by traditional high temperature solid state reaction. The photoluminescence (PL) properties of Gd(BO2)3 and Gd(BO2)3 activated with Eu3+ are investigated. The PL spectra exhibit the typical characteristic emission and excitation of Gd3+ and Eu3+ ions, and support the energy transfer taking place from Gd3+ to Eu3+ ions. The relationship between Eu3+ doping concentration and emission intensity is also studied. Even if all of the Gd3+ ions are substituted by Eu3+ ions, the concentration quenching between Eu3+ happens. However, the quenching is not complete. The luminescence decay curves are measured, and the lifetimes become short with the Eu3+ content increasing. The decreasing Gd3+ lifetimes also indicates that there exists efficient energy transfer between Gd3+ and Eu3+ ions.  相似文献   

4.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   

5.
The luminescence properties of polyphosphates NaEu x Gd(1?x)(PO3)4 (x = 0–1.00) and the energy transfer from Gd3+ to Eu3+ were studied. In undoped NaGd(PO3)4 sample, the photon cascade emission of Gd3+ was observed under 8S7/26GJ excitation (201 nm) in which the emission of a red photon due to 6GJ6PJ transition is followed by an ultraviolet photon emission due to 6PJ8S7/2 transition. When part of Gd3+ ions in the host NaGd(PO3)4 were substituted by Eu3+ ions, the NaGd(PO3)4:Eu3+ sample showed intensive red emission under 172-nm vacuum-ultraviolet (VUV) excitation which is suitable for mercury-free fluorescent lamps and plasma display panel applications. Based on the VUV–visible spectroscopic characteristics and the luminescence decay properties of NaGd(PO3)4:Eu3+, it was found that the quantum cutting by a two-step energy transfer from Gd3+ to Eu3+ can improve the red emission of Eu3+ ions under VUV excitation but only a part of the excitation energy in the excited 6PJ states within Gd3+ ions can be transferred to Eu3+ ions for its red emission, and the nonradiative energy transfer efficiencies from the excited 6PJ states within Gd3+ to Eu3+ were calculated.  相似文献   

6.
The luminescence and thermally stimulated recombination processes in lithium borate crystals Li6Gd(BO3)3 and Li6Gd(BO3)3:Ce have been studied. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence), temperature dependences of the intensity of steady-state X-ray luminescence (XL), and thermally stimulated luminescence (TSL) spectra of these compounds have been investigated in the temperature range of 90–500 K. The intrinsic-luminescence 312-nm band, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ matrix ions, dominates in the X-ray luminescence spectra of these crystals; in addition, there is a wide complex band at 400–420 nm, which is due to the d → f transitions in Ce3+ impurity ions. It is found that the steady-state XL intensity in these bands increases several times upon heating from 100 to 400 K. The possible mechanisms of the observed temperature dependence of the steady-state XL intensity and their correlation with the features of electronic-excitation energy transfer in these crystals are discussed. The main complex TSL peak at 110–160 K and a number of minor peaks, whose composition and structure depend on the crystal type, have been found in all crystals studied. The nature of the shallow traps that are responsible for TSL at temperatures below room temperature and their relation with defects in the lithium cation sublattice are discussed.  相似文献   

7.
李杰  王育华  董其铮  刘吉地 《中国物理 B》2010,19(6):63301-063301
Y$_{0.75 - x}$GdxAl0.10BO$3:Eu$^{3+}0.10, 0.05R3+ ($R$=Sc, Bi) ($0.00 ≤ x ≤ 0.45$) powder samples are prepared by solid-state reaction and their luminescence properties are investigated. With the replacement of Y3+$ ions by Sc3+$ (or Bi3+)$ and Gd3+$ ions in (Y,Al)BO$3:Eu, the intensities of emission at 254 and 147~nm are remarkably improved, because Sc3+$ ions can absorb UV light and transfer the energy to Eu3+$ ions efficiently. Moreover, Gd3+$ and Bi$^{3 + }$ ions act as an intermediate ``bridge' between the sensitizer and the activator (Eu3+)$ in energy transfer to produce light in the (Y, Gd)BO$3:Bi3+$, Eu3+$ system more effectively. After doping an appropriate concentration of Gd3+$ into Y$_{0.50}$Gd$_{0.25}$Al0.10BO$3:Eu3+_{0.01}$, Bi$^{3+}_{0.05}$, the emission intensity reaches its maximum, which is nearly 110{\%} compared with the red commercial phosphor (Y,Gd)BO$3:Eu and better chromaticity coordinates (0.650, 0.350) are obtained.  相似文献   

8.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

9.
This paper reports on a study of the luminescence emitted by Li6Gd(BO3)3: Ce3+ crystals under selective photoexcitation to lower excited states of the host ion Gd3+ and impurity ion Ce3+ within the 100–500-K temperature interval, where the mechanisms of migration and relaxation of electronic excitation energy have been shown to undergo noticeable changes. The monotonic 10–15-fold increase in intensity of the luminescence band at 3.97 eV has been explained within a model describing two competing processes, namely, migration of electronic excitation energy over chains of Gd3+ ions and vibrational energy relaxation between the 6 I j and 6 P j levels. It has been shown that radiative transitions in Ce3+ ions from the lower excited state 5d 1 to 2 F 5/2 and 2 F 7/2 levels of the ground state produce two photoluminescence bands, at 2.08 and 2.38 eV (Ce1 center) and 2.88 and 3.13 eV (Ce2 center). Possible models of the Ce1 and Ce2 luminescence centers have been discussed.  相似文献   

10.
The luminescence and recombination processes in crystals of lithium borates Li6Gd x Y1 − x (BO3)3:Eu have been investigated. The steady-state X-ray luminescence (XRL) spectra, the temperature dependences of the XRL intensity, and the thermally stimulated luminescence (TSL) spectra have been measured for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3:Eu, and Li6Gd(BO3)3:Eu compounds in the temperature range of 90–500 K. It is established that the band at 312 nm, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ ions and the group of lines at 580–700 nm, which are due to the 5 D 07 F J (J = 0 … 4) transitions in Eu3+ ions dominate in the XRL spectra. The XRL intensity in these bands increases several times with a change in temperature from 100 to 400 K for undoped crystals. The likely mechanisms of the observed temperature dependence of the XRL intensity and their relationship with the features of electronic-excitation energy transfer in these crystals are discussed. The spectra of all crystals under study exhibit a dominant composite TSL peak with a maximum at 110–160 K and a series of weaker peaks, the composition and structure of which depend on the crystal type. The nature of the shallow traps, which are responsible for the TSL at temperatures below room, and their relationship with the defects of lithium cation sublattice are discussed.  相似文献   

11.
The luminescent characteristics of Li2O-B2O3-P2O5-CaF2 (LBPC) glasses doped with Gd3+ and Tb3+ ions and codoped with Ce3+ are studied by pulsed optical spectrometry under electron beam excitation. It is found that in glass with Ce3+ and Gd3+ ions a decrease in the decay time of gadolinium luminescence in the 312-nm band (6 P J 8 S 7/2) was observed. It is shown that in the glass LBPC: Tb, Ce, an increase in the emission intensity in the main radiative transitions in terbium ion was observed. In the kinetics of luminescence band 545 nm of LBPC: Tb, Ce glasses, is present stage of buildup, the character of which changes with the doped of Ce3+ ions. The mechanism of energy transfer in LBP glasses doped with rare elements is discussed.  相似文献   

12.
The reflection and luminescence excitation spectra of CaF2 crystals containing europium ions in divalent (Eu2+) and trivalent (Eu3+) states were measured in the range from 4 to 16 eV. It was established that, in CaF2 : Eu3+ crystals, luminescence of Eu3+ ions (the f-f transitions) is effectively excited both in the charge-transfer band (at ~8 eV) and in the region of the 4f–5d transitions (at ~10 eV) but is virtually not excited in the fundamental region of the crystal (at an energy higher than 10.5 eV). Luminescence of Eu2+ ions (the 427-nm band) in CaF2 : Eu3+ is effectively excited in the fundamental region of the crystal; i.e., luminescence of divalent europium ions occurs through the trapping mechanism. Emission of Eu2+ ions in CaF2 : Eu2+ crystals is characterized by the excitation band at an energy of 5.6 eV (the 4f → 5d,t 2g transitions), as well as by the exciton and interband luminescence excitations. The results obtained and data available in the literature are used to construct the energy level diagram with the basic electron transitions in the CaF2 : Eu crystals.  相似文献   

13.
Abstract

Spectroscopic properties of Ce3+ ions in GdAlO3 crystal are presented. At least three Ce3+ nonequivalent centres (multisites) are present in this crystal. Energy transfer from the Ce3+ main in the UV emitting centres to the Ce3+ green emitting centres is observed. Ce3+ fluorescence decays are either fast (1.5–20 ns) or slower due to complicated processes of energy transfer and migration (Ce3+)i → (Gd3+)n-steps → (Ce3+)j (energy transfer through Gd3+ sublattice).  相似文献   

14.
Optical properties of europium doped LiGdF4 (LGF) powders synthesized by the sol-gel process were investigated in the VUV range. Emission of two visible photons (due to 5D07FJ transitions on two Eu3+ ions) per absorbed VUV photon was demonstrated indicating that a quantum cutting phenomenon takes place. This mechanism is explained by a two-step energy transfer when exciting Gd3+ ions in their 6GJ high energy level. Best luminescence efficiency was recorded at room temperature for samples with a doping rate of 5 mol% in europium ions. Effect of rare-earth concentration on internal quantum cutting efficiency was studied. Temperature dependence was also investigated and showed that the down-conversion process upon excitation at 202 nm becomes inefficient at low temperature since energy transfer from Gd3+ ions to Eu3+ ions is not effective any more. Such a result was connected with the thermal population at room temperature of Eu3+7F1 state which is involves in the first step of the energy transfer.  相似文献   

15.
The processes of excitation energy transfer in phosphors based on single-crystal Tb3Al5O12:Ce (TbAG:Ce) and Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet films have been investigated. These films are considered to be promising materials for screens for X-ray images and luminescence converters of blue LED radiation. The conditions for excitation energy transfer from the matrix (Tb3+ cations) to Ce3+ and Eu3+ ions in TbAG:Ce and TbAG:Ce,Eu phosphors have been analyzed in detail. It is established that a cascade process of excitation energy transfer from Tb3+ ions to Ce3+ and Eu3+ ions and from Ce3+ ions to Eu3+ ions is implemented in TbAG:Ce,Eu via dipole-dipole interaction and through the Tb3+ cation sublattice.  相似文献   

16.
A novel Ce3+/Eu2+ co-activated LiSr4(BO3)3 phosphor has been synthesized by traditional solid-state reaction. The samples could display varied color emission from blue towards white and ultimately to yellow under the excitation of ultraviolet (UV) light with the appropriate adjustment of the relative proportion of Ce3+/Eu2+. The resonance-type energy transfer mechanism from Ce3+ to Eu2+ in LiSr4(BO3)3:Ce3+, Eu2+ phosphors is dominant by electric dipole–dipole interaction, and the critical distance is calculated to be about 29.14 Å by the spectra overlap method. White light was observed from LiSr4(BO3)3:mCe3+, nEu2+ phosphors with chromaticity coordinates (0.34, 0.30) upon 350 nm excitation. The LiSr4(BO3)3:Ce3+, Eu2+ phosphor has potential applications as an UV radiation-converting phosphor for white light-emitting diodes.  相似文献   

17.
Phosphors CaYBO4:RE3+ (RE=Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360 nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.  相似文献   

18.
刘林峰  吕树臣 《发光学报》2009,30(2):228-232
利用共沉淀法制备了纳米晶Gd2O3 : Eu3+发光粉体。 在不同掺杂浓度、不同煅烧温度的系列样品中,均观测到Eu3+离子的特征发射。样品的晶相与发射性质的研究表明:所制备的样品经800~1 300 ℃热处理后,晶相为立方相,1 400 ℃时开始向单斜相转变。荧光强度与Eu3+离子掺杂浓度关系研究表明:在不同掺杂浓度中,Eu3+离子浓度为4%时其相对发射强度最强。在三个不同的煅烧温度中,经800 ℃煅烧的样品其发光效果最好。此外还观察到电荷转移激发态以及基质、Gd3+与Eu3+之间的能量传递。激发谱包含三部分,即电荷转移带、Eu3+的4f内壳层电子跃迁和Gd3+的激发谱。  相似文献   

19.
This work reports a systematic study on bridging between structure and optimum luminescence for Ce1?xGdxF3:Eu3+ nanoparticles. It is found that all Ce1?xGdxF3:Eu3+ nanoparticles were nearly monodispersed, showing average grain diameter of 30–35 nm. Regardless of the dopant level, all nanocrystals crystallized in a single hexagonal phase. With increasing Gd3+ content, the lattice dimension for Ce1?xGdxF3:Eu3+ linearly decreased, which was followed by the highly distorted lattice symmetry surrounding Eu3+. The consequence of the structural modification is that the color purity was significantly improved. Furthermore, the excitation energy of Ce3+ in the ultraviolet range was efficiently transferred to Eu3+ ions via the sensitizer Gd3+, which significantly enhanced the red emission and showed a maximized quantum efficiency of 59.7%.  相似文献   

20.
The intermediate role of Gd3+ in energy transfer to give light was investigated through spectroscopic study of Bi3+/Eu3+ doped YBO3/(Y,Gd)BO3 under VUV/UV excitation. All samples were prepared by solid-state reaction and the luminescent properties were characterized in a synchrotron radiation instrument. The results show that Gd3+ plays an intermediate “bridge” between the sensitizer of Bi3+ and the activator of Eu3+ in energy transfer in (Y,Gd)BO3:Bi3+,Eu3+ system. At the same, the mechanism for energy transfer was discussed, which is mainly through electric multipole interaction or exchange interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号