首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variable temperature (-115 to -155 degrees C) studies of the infrared spectra (3200-400 cm-1) of 4-fluoro-1-butene, CH2=CHCH2CH2F, dissolved in liquid krypton have been carried out. The infrared spectra of the gas and solid as well as the Raman spectra of the gas, liquid, and solid have also been recorded from 3200 to 100 cm-1. From these data, an enthalpy difference of 72 +/- 5 cm-1 (0.86 +/- 0.06 kJ x mol-1) has been determined between the most stable skew-gauche II conformer (the first designation refers to the position of the CH2F group relative to the double bond, and the second designation refers to the relative positions of the fluorine atom to the C-C(=C) bond) and the second most stable skew-trans form. The third most stable conformer is the skew-gauche I with an enthalpy difference of 100 +/- 7 cm-1 (1.20 +/- 0.08 kJ x mol-1) to the most stable form. Larger enthalpy values of 251 +/- 12 cm-1 (3.00 +/- 0.14 kJ x mol-1) and 268 +/- 17 cm-1 (3.21 +/- 0.20 kJ x mol-1) were obtained for the cis-trans and cis-gauche conformers, respectively. From these data and the relative statistical weights of one for the cis-trans conformer and two for all other forms, the following conformer percentages are calculated at 298 K: 36.4 +/- 0.9% skew-gauche II, 25.7 +/- 0.1% skew-trans, 22.5 +/- 0.2% skew-gauche I, 10.0 +/- 0.6% cis-gauche, and 5.4 +/- 0.2% cis-trans. The potential surface describing the conformational interchange has been analyzed and the corresponding two-dimensional Fourier coefficients were obtained. Nearly complete vibrational assignments for the three most stable conformers are proposed and some fundamentals for the cis-trans and the cis-gauche conformers have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared, and Raman intensities have been predicted from ab initio calculations and compared to the experimental values when applicable. The adjusted r0 structural parameters have been determined by combining the ab initio predicted parameters with previously reported rotational constants from the microwave data. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

2.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

3.
Hydrozincite and smithsonite were synthesised by controlling the partial pressure of CO2. Previous crystallographic studies concluded that the structure of hydrozincite was a simple one. However both Raman and infrared spectroscopy show that this conclusion is questionable. Multiple bands are observed in both the Raman and infrared spectra in the (CO3)2− antisymmetric stretching and bending regions of hydrozincite showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the hydrozincite structure. Multiple OH stretching vibrations centred in both the Raman and infrared spectra show that the OH units in the hydrozincite structure are non-equivalent. The Raman spectrum of synthetic smithsonite is a simple spectrum characteristic of carbonate with Raman bands observed at 1408, 1092 and 730 cm−1.  相似文献   

4.
Both spectral and structural studies of 5-amino-3-methyl-4-isoxazolecarbohydrazide (HIX) were done and compared to calculated parameters using ab initio DFT methods. A detailed interpretation of the infrared and Raman spectra of title molecule is reported on the basis of the calculated potential energy distribution (PED). The conformational search for possible conformers and tautomers of title compound has been conducted and widely discussed. N-deuterated isotopologue of 5-amino-3-methyl-4-isoxazolecarbohydrazide (HIXD) was synthesized to eliminate disturbing frequencies in carbonyl region of IR and Raman. Besides, N-deutaration enabled the unambiguous assignment some bands to specific vibrations. Moreover, the stability of the 5-amino-3-methyl-4-isoxazolecarbohydrazide arising from hyper conjugative interactions has been studied using natural bond orbital (NBO) analysis.  相似文献   

5.
Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L−1. The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86 ± 4%) was compared to the result obtained using an enzymatic reaction with UV-vis spectrophotometry detection (78 ± 8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L−1. Comparison of the fermentation efficiencies measured by Raman spectroscopy (80 ± 10%) and gas chromatrography-mass spectrometry (87 ± 9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to generate lignocellulosic ethanol.  相似文献   

6.
This paper reports the application of Raman and Fourier transform infrared (FTIR) spectroscopy techniques for the investigation of molecular restructuring of polypyrrole (PPy) nanostructures in ammonia environment. Different types of PPy nanostructures such as nanofibers, nanorods, and nanoparticles were prepared in the presence of different surfactants such as cetyltrimethyl ammonium bromide (CTAB), methyl orange, sodium dodecyl sulfate, and Triton X-100, respectively. The prepared nanostructures were characterized for structural, morphological, and the gas sensing properties. The gas sensing reponse towards ammonia is estimated from change in the surface resistance of the sample. PPy nanofibers prepared in the presence of CTAB have a diameter of ∼63 nm and the gas sensing response of ∼18%, whereas, PPy nanoparticles prepared in the presence of Triton X-100 have a diameter of ∼94 nm and the lowest gas sensing response (6.5%) at 100 ppm level of ammonia. The mechanism of gas sensing has been investigated through vibrational (Raman and FTIR) spectroscopy techniques performed in the presence of analyte (ammonia) gas. The charge compensation via proton transfer process in ammonia environment is found to be main cause for the gas sensing response in the PPy nanostructures.  相似文献   

7.
Infrared and Raman spectroscopic studies on NH4BF4 were conducted in the temperature ranges 300° to 17 °K and 300° to 77 °K, respectively. The infrared studies were also extended to include the deuterated salt. Full vibrational assignments are made. Changes in spectra as well as intensity measurements on the infrared bands indicated anomalous behaviour in the regions 100–110 °K and 158–173 °K. Possible reasons for these changes are proposed. Evidence of hydrogen bonding was found below 110 °K.  相似文献   

8.
Durig  James R.  Shen  Shiyu 《Structural chemistry》2003,14(2):199-210
Variable temperature (–100 to –150°C) studies of the infrared spectra (3500–400 cm–1) of propenoyl bromide, CH2=CHCBrO, dissolved in liquid krypton, have been carried out. Utilizing six different conformer pairs, an enthalpy difference of 204 ± 20 cm–1 (2.44 ± 0.24 kJ/mol) was obtained, with the anti conformer (carbonyl bond trans to C=C bond) the more stable form. At ambient temperature, there is approximately 28 ± 2% of the syn conformer present. The anti conformer also remains in the infrared and Raman spectra of the polycrystalline solid. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies, are reported for both conformers from MP2/6-31G(d) ab initio calculations. The potential function governing the conformational interchange has been obtained from the MP2/6-31G(d) ab initio calculations. The conformational stabilities were calculated from a variety of basis sets and at the highest level of calculations, MP2/6-311 + (2df,2pd), the anti conformer is predicted to be more stable by 178 cm–1, which is in excellent agreement with the experimental results. The r 0 adjusted structural parameters have been obtained for propenoyl fluoride and chloride from a combination of the previously reported microwave rotational constants and ab initio predicted parameters. Several of the parameters for the chloride are significantly different than those proposed from an electron diffraction investigation. The results of these spectroscopic, structural, and theoretical studies are discussed and compared to the corresponding results for some similar molecules.  相似文献   

9.
Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400–490 cm−1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm−1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.  相似文献   

10.
The infrared and Raman spectra of four polymorphic phases (α, α1, γ and γ1) of erucic acid (cis-13-docosenoic acid) and those of two polymorphic phases (α and γ) of palmitoleic acid (cis-9-hexadecenoic acid) were investigated. The γ and γ1 phases of erucic acid were analyzed on the basis of crystal structures determined by us. There were large spectral differences between γ and γ1 phases, which could be ascribed to the differences in the conformation of cis-olefin groups and the subcell structure. Two types of reversible solid state phase transitions (γ→α and γ1→α1 transitions) were followed by the infrared and Raman spectra. It was concluded that the mechanism of the γ→α phase transition of erucic and palmitoleic acids is essentially the same as that of oleic acid previously reported by us [J. Phys. Chem. 90, 6371 (1986)], i.e. this phase transition is of order-disorder type accompanied by a conformational disordering at the methyl-terminal chain. Spectral changes on the γ1→α1 transition suggested that a similar structural change took place during this transition but there were large structural differences between α and α1.  相似文献   

11.
The polarized Raman spectra of oriented single crystals as well as far and mid infrared spectra of pellets of RuCp2* (Cp* = η5-C5Me5) (1) were recorded. Assuming local C5v symmetry for the intra-ligand vibrations, pairs of Raman and IR bands of nearly equal energy result for the symmetric and antisymmetric modes, respectively, for the irreducible representations (irreps) a1, e1, and partly (the IR part is symmetry forbidden, in principle, but sometimes observed) of e2 symmetry. By this means, intra-ligand and skeletal vibrations (where no pairs of Raman and IR bands are expected) could be separated, and the Raman active modes were assigned to irreps on the basis of the observed polarizations. The still questionable type of vibration of some intra-ligand modes could be elucidated by the comparison of the vibrational spectra of 1 with the already assigned ones of NaCp*. Transferring the results of 1 to the Raman and IR spectra of OsCp2* (2) and FeCp2* (3), a number of previous assignments have to be revised.  相似文献   

12.
The high-yield syntheses of trifluoroacetonitrile (1a), pentafluoropropionitrile (1b) and heptafluorobutyronitrile (1c) under mild reaction conditions using readily available starting materials (trifluoroacetamide, pentafluoropropionamide, heptafluorobutanamide) are described. Furthermore, the reactions of the perfluoroalkyl nitriles with sodium azide in acetonitrile forming sodium 5-trifluoromethyltetrazolate (2a), sodium 5-pentafluoroethyltetrazolate (2b) and sodium 5-heptafluoropropyltetrazolate (2c) were undertaken. The 5-perfluoroalkyltetrazolate salts were characterized using vibrational (Raman and infrared) and multinuclear (13C, 14/15N, 19F) NMR spectroscopy, differential scanning calorimetry, mass spectrometry and elemental analysis. Additionally, the single crystal X-ray structure of the monohydrate of 2a was determined. Crystal data: 2a·H2O: monoclinic, C2/m, a = 18.8588(6) Å, b = 7.1857(2) Å, c = 9.3731(3) Å, β = 102.938(3)°, V = 1237.94(7) Å3, Z = 8, Dcalc = 1.911 g cm−3.  相似文献   

13.
Variable temperature (−55 to −100 °C) studies of the infrared spectra (3200 to 100 cm−1) of cyclopropylmethyl isocyanate, c-C3H5CH2NCO, dissolved in liquefied xenon, have been carried out. The infrared spectra (gas and solid) as well as the Raman spectrum of the liquid have been recorded from 3200 to 100 cm−1. By analyzing six conformer pairs in xenon solutions, an enthalpy difference of 193 ± 19 cm−1 (2.31 ± 0.23 kJ/mol) was obtained with the gauche–cis rotamer (the first designation indicates the orientation of the CNCO group with respect to the three-membered ring, the second designation indicates the relative orientation of the NCO group with respect to the bridging CC bond) the more stable form and the only form present in polycrystalline solid. The abundance of the cis–trans conformer present at ambient temperature is 16 ± 1%. The potential function governing the conformational interchange has been obtained from B3LYP/6-31G(d) calculations and the two-dimensional potential has been obtained. From MP2 ab initio calculations utilizing various basis sets with diffuse functions, the gauche–cis conformer is predicted to be more stable by 223 to 269 cm−1, which is consistent with the experimental results. However, without diffuse functions the predicted conformational energy differences are much smaller (77–166 cm−1). Similar diffuse function dependency affects density functional theory calculations by the B3LYP method to a lesser extent. A complete vibrational assignment for the gauche–cis conformer is proposed and several fundamentals for the cis–trans conformer have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and r0 structural parameters are estimated. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

14.
The correlation functions of the dipole moment, P2[u(0) · u(t)], angular and linear velocity, and bond forces have been calculated from computer simulated data for four different density-temperature states of N2 in fluid argon. From these functions infrared and Raman line shapes, NMR relaxation times, and rotational and classical vibrational relaxation times have been computed.  相似文献   

15.
Surface-imprinted core–shell Au nanoparticles (AuNPs) were explored for the highly selective detection of bisphenol A (BPA) by surface-enhanced Raman scattering (SERS). A triethoxysilane-template complex (BPA-Si) was synthesized and then utilized to fabricate a molecularly imprinted polymer (MIP) layer on the AuNPs via a sol–gel process. The imprinted BPA molecules were removed by a simple thermal treatment to generated the imprint-removed material, MIP-ir-AuNPs, with the desired recognition sites that could selectively rebind the BPA molecules. The morphological and polymeric characteristics of MIP-ir-AuNPs were investigated by transmission electron microscopy and Fourier-transform infrared spectroscopy. The results demonstrated that the MIP-ir-AuNPs were fabricated with a 2 nm MIP shell layer within which abundant amine groups were generated. The rebinding kinetics study showed that the MIP-ir-AuNPs could reach the equilibrium adsorption for BPA within 10 min owning to the advantage of ultrathin core–shell nanostructure. Moreover, a linear relationship between SERS intensity and the concentration of BPA on the MIP-ir-AuNPs was observed in the range of 0.5–22.8 mg L−1, with a detection limit of 0.12 mg L−1 (blank ± 3 × s.d.). When applied to SERS detection, the developed surface-imprinted core–shell MIP-ir-AuNPs could recognize BPA and prevent interference from the structural analogues such as hexafluorobisphenol A (BPAF) and diethylstilbestrol (DES). These results revealed that the proposed method displayed significant potential utility in rapid and selective detection of BPA in real samples.  相似文献   

16.
The FTIR and Laser Raman spectra of 4-amino pyrazolo (3,4-d) pyrimidine have been measured in the regions 4000–400 cm−1 and 3500–100 cm−1, respectively. Utilizing the observed FTIR and Laser Raman data, a complete vibrational assignment and analysis of the fundamental modes of the title compound were carried out. The vibrational frequency which were determined experimentally are compared with those theoretically from force field calculation based on ab initio HF/6−311+G**(d,p) and standard B3LYP/6−311+G**(d,p) methods and basis set combinations for optimized geometries. The observed FTIR and Laser Raman vibrational frequencies were analysed and compared with the theoretically predicted vibrational frequencies. The assignments of bands to various normal modes of the molecules were also carried out. A detailed interpretation of the infrared and Raman spectra of 4-amino pyrazolo (3,4-d) pyrimidine [4AP(3,4-D)P] is also reported based on total energy distribution (TED). The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have also been constructed.  相似文献   

17.
Raman spectra of cyclopropylmethyl dichlorosilane (c-C3H5)SiCl2CH3 as a liquid were recorded at 293 K and polarization data were obtained. Additional Raman spectra were recorded at various temperatures between 293 and 163 K, and intensity changes of certain bands with temperature were detected. No crystallization was ever obtained in the Raman cryostat in spite of extensive annealing. The infrared spectra have been studied as a vapour, as an amorphous solid at 78 K and as a liquid in the range 600-100 cm−1. No infrared bands present in the vapour or liquid seemed to vanish upon cooling, and the sample never formed crystals on the CsI window of an infrared cryostat.The compound exists a priori in two conformers, syn and gauche, and the experimental results suggest an equilibrium in which the gauche conformer has 1.64 kJ mol−1 lower enthalpy than syn in the liquid, leading to 20% syn at ambient temperature. Most of the syn bands were situated close to the corresponding gauche bands and it was difficult to obtain reliable ΔH values.B3LYP calculations with various basis sets and the CBS-QB3 and G2 and G3 models were employed, yielding the conformational enthalpy difference ΔH (syn-gauche) between 2.6 and 3.4 kJ mol−1. Infrared and Raman intensities, polarization ratios and vibrational frequencies for the syn and gauche conformers were calculated. Instead of scaling the calculated wavenumbers in the harmonic approximation, calculations from B3LYP/cc-pVTZ were derived in the anharmonic approximation. In most cases these values were in good agreement with the experimental results for 38 observed modes of the gauche and 8 modes of the syn conformer with a deviation of ca. 1%.  相似文献   

18.
It is known that Raman scattering signals are one of main interference sources leading up to determination errors in spectrofluorometry, and thus the signals can be easily detected with a common spectrofluorometer. In this contribution, we propose a quantitative method based on the inner filter effect (IFE) of reagents on the Raman scattering signals of solvent by taking the complexation of divalent cobalt ion with 4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene (5-Cl-PADAB) as a model system. By adjusting the excitation wavelength of the spectrofluorometer, we could easily detect the Raman scattering signals of water at 424 nm where the maximum absorption of 5-Cl-PADAB reagent is located. In a solution of 5-Cl-PADAB, the Raman scattering signals of water are decreased owing to the IFE of 5-Cl-PADAB. If Co(II), which could form the binary complex of Co(II)/5-Cl-PADAB and consumes the 5-Cl-PADAB reagent, is present in such a case for a given amount of 5-Cl-PADAB solution, recovered Raman scattering signals could be observed and measured with a spectrofluorometer. It was found that the intensity of the enhanced Raman scattering signals is proportional to the Co(II) concentration over the range from 2.0 × 10−7 mol L−1 to 1.0 × 10−5 mol L−1, and the detection limit could reach 1.2 × 10−7 mol L−1. With that, Co(II) in samples could be detected with R.S.D. values lower than 2.6% and recoveries over the range of 97.2-104.7%.  相似文献   

19.
A scanning angle (SA) Raman microscope with 532-nm excitation is reported for probing chemical content perpendicular to a sample interface. The instrument is fully automated to collect Raman spectra across a range of incident angles from 20.50 to 79.50° with an angular spread of 0.4 ± 0.2° and an angular uncertainty of 0.09°. Instrumental controls drive a rotational stage with a fixed axis of rotation relative to a prism-based sample interface mounted on an inverted microscope stage. Three benefits of SA Raman microscopy using visible wavelengths, compared to near infrared wavelengths are: (i) better surface sensitivity; (ii) increased signal due to the frequency to the fourth power dependence of the Raman signal, and the possibility for resonant enhancement; (iii) the need to scan a reduced angular range to shorten data collection times. These benefits were demonstrated with SA Raman measurements of thin polymer films of polystyrene or a diblock copolymer of polystyrene and poly(3-hexylthiophene-2,5-diyl). Thin film spectra were collected with a signal-to-noise ratio of 30 using a 0.25 s acquisition time.  相似文献   

20.
Melamine adulteration of food and pharmaceutical products is a major concern and there is a growing need to protect the public from exposure to contaminated or adulterated products. One approach to reduce this threat is to develop a portable method for on-site rapid testing. We describe a universal and selective method for the detection of melamine in a variety of solid matrices at the 100–200 μg L−1 level by surface enhanced Raman spectroscopy (SERS) with gold nanoparticles. With minimal sample preparation and the use of a portable Raman spectrometer, this work will lead to field-based screening for melamine adulteration. Citrate coated gold nanoparticles (Au NPs) were investigated for both colorimetric and Raman-based responses. Several non-hazardous solvents were evaluated in order to develop a melamine extraction procedure safe for field applications. Au NP agglomerates formed by the addition of isopropanol (IPA) prior to sample introduction enhanced the Raman signal for melamine and eliminated matrix interference for substrate formation. The melamine Raman signal resulted in a 105 enhancement through the use of Au NP agglomerates. To our knowledge, we have developed the first portable SERS method using Au NPs to selectively screen for the presence of melamine adulteration in a variety of food and pharmaceutical matrices, including milk powder, infant formula, lactose, povidone, whey protein, wheat bran and wheat gluten.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号