首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(14):1283-1291
Abstract

Donnan dialysis of cations into simple receiver electrolytes such as NaNO3 is inhibited by interaction between the fixed sulfonate exchange sites on the cation exchange membrane and the test cations. Application of a 5 V cm?1 (peak-to-peak) sine wave at 1 MHz across the membrane diminishes the retardation and allows the Donnan dialysis rate to approach the diffusion limit with Cd, Cu, and Zn test metals and a 0.1 M NaNO3 receiver. The transport to Pb is still retarded by about 25%. The use of 0.2 M Mg(II), 0.5 mM Al(III) receiver results in diffusion limited transport for all metals.  相似文献   

2.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

3.
In this study, 25,27-bis(3-mercaptopropoxyl)-26,28-dihydroxy calix[4]arene was successfully synthesized from the reaction of calix[4]arene-dialkylbromide derivative with thiourea. The structure of 25,27-bis(3-mercaptopropoxyl)-26,28-dihydroxy calix[4]arene was fully characterized using 1HNMR, 13CNMR and elemental analysis techniques. The obtained mercapto-substituted calix[4]arene derivative was employed as an additive material along with cellulose triacetate (CTA) and 2-nitrophenyl octyl ether (o-NPOE) for the preparation of a novel polymer inclusion membrane (C@PIM). The structure and surface morphology of mercapto-substituted calix[4]arene-embedded polymer inclusion membrane was determined using thermogravimetric analysis, scanning electron microscopy and elemental analysis techniques. Donnan dialysis system was also used to assess the transport efficacy of C@PIM towards Pb(II), Zn(II), Cu(II), Ni(II), Cd(II) and Co(II) ions. The results show that new C@PIM exhibited 99% transport efficacy but also selectivity toward Ni(II) and other ions.  相似文献   

4.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

5.
Cox JA  Bhatnagar A 《Talanta》1990,37(11):1037-1041
A liquid membrane comprising 5-10% bis(2,4,4-trimethylpentyl)phosphinic acid in dodecane that is supported between an aqueous sample at pH 4.7-6.0 and a 0.1M HCl receiver results in uphill transport of Zn(II) from the sample into the receiver. With 2 ml of receiver, a 5 cm(2) membrane and 60 min dialysis time, Zn(II) is preconcentrated by a factor of ca. 13 when the initial concentration in the sample is in the range 1.5 x 10(-7)-1.5 x 10(-4)M. The enrichment factor is directly proportional to time up to 30 min since the transport rate of Zn(II) across the membrane is constant over this period. At longer times the flux is slowed as the system begins to approach equilibrium. The presence of other metals such as Cu(II), Co(II), Ni(II), Cd(II), Pb(II) and Fe(II) does not change the enrichment factor for Zn(II), even when the interferent is at a concentration high enough for the rate of transport (nmole/min) of the interferent and Zn(II) to be about the same. The flux of Zn(II) was about 40 times that of Cu(II) and 100 times that of Co(II) when their concentrations in the sample were equal. The other metal ions examined are not significantly transported.  相似文献   

6.
Summary The adsorption behaviour of ten metal complexes Cr(III), Cr(VI), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) with ferron on Zeo-Karb-226 in the H+ form was investigated at eight different pH-values in order to develop a preconcentration technique for trace amounts of these elements in aqueous solution. The concentrations of the remaining unadsorbed metal ions were determined by atomic absorption spectrophotometry. Under the present experimental conditions, Cr(III) and Pb(II) can be quantitatively determined within the pH range 4–8, while for Cd(II), the optimum pH-range is 7–11. But at pH 11, more than 95% of Cu(II) and Co(II) can be extracted from aqueous solution. The suitability of the technique has been evaluated by analyzing cadmium in simulated water samples. The results indicate that as low as 5 g 1–1 of CD can be recovered with more than 96% efficiency from 11 of simulated water solution.
Adsorptionsverhalten einiger Metallkomplexe mit Ferron an Zeokarb-226: eine AAS-Untersuchung
Zusammenfassung Das Adsorptionsverhalten der Komplexe von Cr(III), Cr(VI), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II), Cd(II) und Pb(II) mit Ferron an Zeokarb-226 in der H+-Form wurde bei acht verschiedenen pH-Werten untersucht, um eine Anreicherungsmethode für Spuren dieser Elemente zu entwickeln. Die Konzentrationen der verbliebenen nicht adsorbierten Metallionen wurden mit Hilfe der AAS bestimmt. Cr(III) und Pb(II) können im pH-Bereich 4–8 quantitativ erfaßt werden, während der optimale Bereich für Cd(II) bei pH 7–11 liegt. Bei pH 11 werden jedoch mehr als 95% Cu(II) und Co(II) aus der wäßrigen Lösung extrahiert. Der Nutzen des Verfahrens wurde durch Bestimmung von Cd(II) in simulierten Wasserproben erwiesen. Noch 5 g/l Cd können zu mehr als 96% aus 11 Wasserprobe wiedergefunden werden.
  相似文献   

7.
The selective polymer membrane transport of Cu(II) from an aqueous solution containing seven metal cations, Co(II), Ni(II), Cu(II), Zn(II), Ag(II), Cd(II) and Pb(II), was studied .The source phase contained equimolar concentrations of the above-mentioned cations, with the source and receiving phases being buffered at pH 4.9 and 3.0, respectively. Cu(II) ion transport occurred (J=2.82 × 10−7 mol/h at 25 °C) from the aqueous source phase across the polymer membrane (derived from cellulose triacetate) containing ligand (I) as the ionophore, into the aqueous receiving phase. Clear transport selectivity for Cu(II) was observed.  相似文献   

8.
The assessment of free Cu(II), Pb(II) and Cd(II) ions in the presence of complexed species was realised by a circulating dialysis with Cuprophan planar membranes and subsequent quantification by flame atomic absorption spectrometry. The effect of the flow rate, the time of equilibration, pH and the presence of various complexing agents in the donor solutions were studied. The determination of free Cu(II), Pb(II) and Cd(II) ions in the presence of soil humic substances resulted from the above studies.  相似文献   

9.
The assessment of free Cu(II), Pb(II) and Cd(II) ions in the presence of complexed species was realised by a circulating dialysis with Cuprophan planar membranes and subsequent quantification by flame atomic absorption spectrometry. The effect of the flow rate, the time of equilibration, pH and the presence of various complexing agents in the donor solutions were studied. The determination of free Cu(II), Pb(II) and Cd(II) ions in the presence of soil humic substances resulted from the above studies.  相似文献   

10.
Competitive adsorption behavior of heavy metals on kaolinite   总被引:9,自引:0,他引:9  
Polluted and contaminated soils can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a soil system will be affected by the presence of other metals. In this study we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto kaolinite in single- and multi-element systems as a function of pH and concentration, in a background solution of 0.01 M NaNO3. In adsorption edge experiments, the pH was varied from 3.5 to 10.0 with total metal concentration 133.3 microM in the single-element system and 33.3 microM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH50 (the pH at which 50% adsorption occurs) was found to follow the sequence Cu相似文献   

11.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

12.
Morin was successful as a chemical modifier to improve the reactivity of the nanometer SiO2 surface in terms of selective binding and extraction of heavy metal ions. This new functionalized nanometer SiO2 (nanometer SiO2-morin) was used as an effective sorbent for the solid-phase extraction (SPE) of Cd(II), Cu(II), Ni(II), Pb(II), Zn(II) in solutions prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using static and dynamic procedures in detail. The pH 4.0 was chosen as the optimum pH value for the separation of metal ions on the newly sorbent. Complete elution of the adsorbed metal ions from the nanometer SiO2-morin was carried out using 2.0 mL of 0.5 mol L−1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 22.36, 36.8, 40.37, 33.21 and 25.99 mg metal/g SiO2-morin for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The time for 95% sorption for Cu(II) and Ni(II) and 70% sorption for Cd(II), Pb(II) and Zn(II) was less than 2 min. The relative standard deviation (RSD) of the method under optimum conditions was lower than 5.0% (n = 11). The procedure was validated by analyzing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. The nanometer SiO2-morin was successfully employed in the separation and preconcentration of trace Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) from the biological and natural water samples yielding 75-folds concentration factor.  相似文献   

13.
We have synthesized two ditopic ligands for selective extraction of copper(II) nitrate. We also synthesized one cation-only binding analog for comparison. All three ligands were characterized by conventional techniques. Competitive two-phase metal ion solvent extraction experiments were performed at 25 °C over a period of 24 h. These ligands showed significant selectivity for Cu(II) ions, having the ditopic ligands extract 81 and 73% of the Cu(II) ions in a solution of different metal ions {Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Pb(II)} at pH 5.09. Competitive transport experiments (water/chloroform/water) were undertaken employing each ligand separately as the ionophore in the membrane (chloroform) phase. No metal ion transport was observed, but a large concentration of Cu(II) was present in the membrane phase. Competitive anion extraction and transport were carried out with the ditopic ligands, yielding selective extraction and transport of nitrate. Furthermore, a pH isotherm of the best ditopic ligand (H2L2) with Cu(II) was determined from pH 1.0 to 6.0, producing a pH½ value of approximately 2.6. Finally, crystal structures of the ditopic ligands complexed with Cu(II) were determined and refined. The coordination geometry around the metal centers are distorted square planar and the Cu(II)-donor bond lengths fall within the normal range.  相似文献   

14.
In this work, 1,10-phenanthroline was used as a complexing agent for the separation and preconcentration of Cd(II), Co(II), Ni(II), Cu(II) and Pb(II) on activated carbon. The metals were adsorbed on activated carbon by two methods: static (1) and dynamic (2). The optimal condition for separation and quantitative preconcentration of metal ions with activated carbon for the proposed methods was for (1) in the static methods in the pH range 7-9. The desorption was found quantitative with 8 mol dm−3 HNO3 for Cd(II) (92.6%), Co(II) (95.6%), Pb(II) (91.0%), and with 3 mol dm−3 HNO3 for Cd(II) (95.4%), Pb(II) (100.2%). The preconcentration factor was 100 with R.S.D. values between 1.0 and 2.9%. For (2), the dynamic method (SPE), the pH range for the quantitative sorption was 7-9. The desorption was found quantitative with 8 mol dm−3 HNO3 for Cd(II) (100.6%), Pb(II) (94.4%), and reasonably high recovery for Co(II) (83%), Cu(II) (88%). The optimum flow rate of metal ions solution for quantitative sorption of metals with 1,10-phenanthroline was 1-2 cm3 min−1 whereas for desorption it was 1 cm3 min−1. The preconcentration factor was 50 for all the ions of the metals with R.S.D. values between 2.9 and 9.8%.The samples of the activated carbon with the adsorbed trace metals can be determined by ICP-OES after mineralization by means of a high-pressure microwave mineralizer. The proposed method provides recovery for Cd (100.8%), Co (97.2%), Cu (94.6%), Ni (99.6%) and Pb (100.0%) with R.S.D. values between 1.2 and 3.2%.The preconcentration procedure showed a linear calibration curve within the concentration range 0.1-1.5 μg cm−3. The limits of detection values (defined as “blank + 3s” where s is standard deviation of the blank determination) are 5.8, 70.8, 6.7, 24.6, and 10.8 μg dm−3 for Cd(II), Pb(II), Co(II), Ni(II) and Cu(II), respectively, and corresponding limit of quantification (blank + 10s) values were 13.5, 151.3, 20.0, 58.9 and 33.2 μg dm−3, respectively.As a result, these simple methods were applied for the determination of the above-mentioned metals in reference materials and in samples of plant material.  相似文献   

15.
Thioacetamide immobilized on silica gel was prepared via the Mannich reaction. The extraction and enrichment of copper(II), lead(II), and cadmium(II) ions from aqueous solutions has been investigated. Conditions for effective extraction are optimized with respect to different experimental parameters in both batch and column processes prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH ranges for quantitative adsorption are 4.0-8.0, 2.0-7.0, and 5.0-10.0 for Pb(II), Cu(II), and Cd(II), respectively. Pb(II) and Cd(II) can be desorbed with 3 mol/L and 0.1 mol/L HCl/HNO3, and Cu(II) can be desorbed with 2.5% thiourea. The adsorption capacity of the matrix has been found to be 19.76, 16.35, and 12.50 mg/g for Pb(II), Cu(II), and Cd(II), respectively, with the preconcentration factor of approximately equal to 300 for Pb(II) and approximately equal to 200 for Cu(II) and Cd(II). Analytical utility is illustrated in real aqueous samples generated from distilled water, tap water, and river water samples.  相似文献   

16.
A solid phase extraction system for separation and preconcentration of trace amounts of Pb(II), Ni(II), Cd(II) and Cu(II) is proposed. The procedure is based on the adsorption of Pb2+, Ni2+, Cd2+ and Cu2+ ions on a column of 1-(2-pyridylazo)-2-naphthol (PAN) immobilised on surfactant-coated clinoptilolite prior to their determinations by Flame Atomic Absorption Spectroscopy (FAAS). The effective parameters including pH, sample volume, sample flow rate and eluent flow rate were also studied. The analytes collected on the column were eluted with 5 mL of 1 mol L?1 nitric acid. A concentration factor of 180 can be achieved by passing 900 mL of sample through the column. The detection limits (3 s) for Cd, Cu, Pb and Ni were found to be 0.28, 0.12, 0.44 and 0.46 µg L?1, respectively. The relative SDs at 10 µg L?1 (n = 10) for analytes were in the range of 1.2–1.4%. The method was applied to the determination of Pb, Ni, Cd and Cu in water samples.  相似文献   

17.
Conditions were studied for the stripping voltammetric determination of components of the Cd(II)-Pb(II)-Cu(II) system in aqueous solutions of (polyethylene imine)methylthiourea (PMT), the most efficient polymer complexant for the membrane preconcentration of heavy metal ions. It was shown that PMT significantly enhances the selectivity of determining Pb(II) and Cd(II) in solutions of Cu(II) by stripping voltammetry. Pb(II) and Cd(II) can be determined in the presence of up to 200- and 50-fold amounts of Cu(II), respectively. The limits of detection for Pb(II) and Cd(II) after a 40-s accumulation were 6.9 x 10-8 and 6.8 x 10-7 M, respectively.  相似文献   

18.
An in-situ antimony film screen-printed carbon electrode (in-situ SbSPCE) was successfully used for the determination of Cu(II) simultaneously with Cd(II) and Pb(II) ions, by means of differential pulse anodic stripping voltammetry (DPASV), in a certified reference groundwater sample with a very high reproducibility and good trueness. This electrode is proposed as a valuable alternative to in-situ bismuth film electrodes, since no competition between the electrodeposited copper and antimony for surface sites was noticed. In-situ SbSPCE was microscopically characterized and experimental parameters such as deposition potential, accumulation time and pH were optimized. The best voltammetric response for the simultaneous determination of Cd(II), Pb(II) and Cu(II) ions was achieved when deposition potential was −1.2 V, accumulation time 120 s and pH 4.5. The detection and quantification limits at levels of μg L−1 suggest that the in-situ SbSPCE could be fully suitable for the determination of Cd(II), Pb(II) and Cu(II) ions in natural samples.  相似文献   

19.
Human hair shavings were characterized as a sorbent for trace metals. At pH 7.0 metal sorption follows the order Pb(II)>Cd(II)>Cr(VI)>Fe(III)>Cu(II)>Ni(II)>Mn(VI). Metal recovery is quantitative for Pb and Cd after 30 min of equilibration. Recovery of other metals is less quantitative and varies with pH. For example, while Cu is best recovered at pH 5, Ni and Mn are sorbed optimally in the basic pH region. Sorbed metals can be washed off the sorbent with 0.5 mol L(-1) strong mineral acids or more completely with 0.1 mol L(-1) ethylenediaminetetraacetic acid (EDTA). Typical sorption isotherms were obtained for Cd and Pb with sorption capacities of 39 and 26 micromol g(-1), respectively.Hair sorbent was used for 40-fold pre-concentration of Cd and Pb from treated wastewater samples followed by flame atomic absorption spectroscopic (FAAS) determination. Comparison of the data obtained for lead and cadmium by the proposed pre-concentration method with that by graphite furnace atomic absorption spectroscopy (GFAAS) showed 79 to 86% recovery and comparable analytical precision. Common cations and anions at the levels normally present in natural water do not interfere in the proposed pre-concentration-FAAS method.  相似文献   

20.
《Analytical letters》2012,45(5):1009-1021
Abstract

Application of morpholine dithiocarbamate (MDTC) coated Amberlite XAD‐4, for preconcentration of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II) by solid phase extraction and determination by inductively coupled plasma (ICP) atomic emission spectrometry (AES) was studied. The optimum pH values for quantitative sorption of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II), and Mn(II) were 6.5–8.0, 7.0–8.5, 6.0–8.5, 6.5–8.5, 7.5–9.0, and 8.0–8.5, respectively. The metals were desorbed with 2 mol L?1. The t1/2 values for sorption of metal ions were 2.6, 2.9, 2.5, 2.6, 3.0, and 3.8 min respectively for Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II). The effect of diverse ions on the determination of the previously named metals was studied. Simultaneous enrichment of the six metals was accomplished, and the method was applied for use in the determination of trace metal ions in seawater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号