首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of Graph Theory》2018,87(2):188-207
We describe an algorithm for generating all k‐critical ‐free graphs, based on a method of Hoàng et al. (A graph G is k‐critical H‐free if G is H‐free, k‐chromatic, and every H‐free proper subgraph of G is ‐colorable). Using this algorithm, we prove that there are only finitely many 4‐critical ‐free graphs, for both and . We also show that there are only finitely many 4‐critical ‐free graphs. For each of these cases we also give the complete lists of critical graphs and vertex‐critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 3‐colorability problem in the respective classes. In addition, we prove a number of characterizations for 4‐critical H‐free graphs when H is disconnected. Moreover, we prove that for every t, the class of 4‐critical planar ‐free graphs is finite. We also determine all 52 4‐critical planar P7‐free graphs. We also prove that every P11‐free graph of girth at least five is 3‐colorable, and show that this is best possible by determining the smallest 4‐chromatic P12‐free graph of girth at least five. Moreover, we show that every P14‐free graph of girth at least six and every P17‐free graph of girth at least seven is 3‐colorable. This strengthens results of Golovach et al.  相似文献   

2.
For a fixed (multi)graph H, a graph G is H‐linked if any injection f: V(H)→V(G) can be extended to an H‐subdivision in G. The notion of an H ‐linked graph encompasses several familiar graph classes, including k‐linked, k‐ordered and k‐connected graphs. In this article, we give two sharp Ore‐type degree sum conditions that assure a graph G is H ‐linked for arbitrary H. These results extend and refine several previous results on H ‐linked, k‐linked, and k‐ordered graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:69–77, 2012  相似文献   

3.
对于图方程 A( H) =n的讨论 ,重点是研究 A2 -图及 A3-图 H及其母图的性质 ,这就需要研究不同类型的 A3-图 .本文给出了不含悬挂点的 A3-图  相似文献   

4.
The K4‐free process starts with the empty graph on n vertices and at each step adds a new edge chosen uniformly at random from all remaining edges that do not complete a copy of K4. Let G be the random maximal K4‐free graph obtained at the end of the process. We show that for some positive constant C, with high probability as , the maximum degree in G is at most . This resolves a conjecture of Bohman and Keevash for the K4‐free process and improves on previous bounds obtained by Bollobás and Riordan and by Osthus and Taraz. Combined with results of Bohman and Keevash this shows that with high probability G has edges and is ‘nearly regular’, i.e., every vertex has degree . This answers a question of Erd?s, Suen and Winkler for the K4‐free process. We furthermore deduce an additional structural property: we show that whp the independence number of G is at least , which matches an upper bound obtained by Bohman up to a factor of . Our analysis of the K4‐free process also yields a new result in Ramsey theory: for a special case of a well‐studied function introduced by Erd?s and Rogers we slightly improve the best known upper bound.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 355‐397, 2014  相似文献   

5.
6.
The ‐free process starts with the empty graph on n vertices and adds edges chosen uniformly at random, one at a time, subject to the condition that no copy of is created. For every we show that, with high probability as , the maximum degree is , which confirms a conjecture of Bohman and Keevash and improves on bounds of Osthus and Taraz. Combined with previous results this implies that the ‐free process typically terminates with edges, which answers a question of Erd?s, Suen and Winkler. This is the first result that determines the final number of edges of the more general H‐free process for a non‐trivial class of graphs H. We also verify a conjecture of Osthus and Taraz concerning the average degree, and obtain a new lower bound on the independence number. Our proof combines the differential equation method with a tool that might be of independent interest: we establish a rigorous way to ‘transfer’ certain decreasing properties from the binomial random graph to the H‐free process. © 2014 Wiley Periodicals, Inc. Random Struct. Alg. 44, 490–526, 2014  相似文献   

7.
For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is a map from the vertices of G to the vertices of H that preserves adjacency. When H is composed of an edge with one looped endvertex, an H‐coloring of G corresponds to an independent set in G. Galvin showed that, for sufficiently large n, the complete bipartite graph is the n‐vertex graph with minimum degree δ that has the largest number of independent sets. In this article, we begin the project of generalizing this result to arbitrary H. Writing for the number of H‐colorings of G, we show that for fixed H and or , for any n‐vertex G with minimum degree δ (for sufficiently large n). We also provide examples of H for which the maximum is achieved by and other H for which the maximum is achieved by . For (and sufficiently large n), we provide an infinite family of H for which for any n‐vertex G with minimum degree δ. The results generalize to weighted H‐colorings.  相似文献   

8.
设G是一个图,并设g和f是定义在V(G)上的整值函数使得对所有的点x∈ V(G)均有g(x)≤ f(x).称一个图G是(g,f,H) -可扩的,如果在删除了任意一个同构于H的子图中所有点后,剩下G的子图有一个(g,f) -因子.该文给出了(g,f,H) -可扩图的特征.进一步,研究了(g,f,H) -可扩(H=nK1)的性质.  相似文献   

9.
10.
Certain graph‐theoretic properties and alternative definitions of the Gray graph, the smallest known cubic edge‐ but not vertex‐transitive graph, are discussed in detail. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 1–7, 2000  相似文献   

11.
A graph is called edge-primitive if its automorphism group acts primitively on its edge set. In 1973, Weiss (1973) determined all edge-primitive graphs of valency three, and recently Guo et al. (2013,2015) classified edge-primitive graphs of valencies four and five. In this paper, we determine all edge-primitive Cayley graphs on abelian groups and dihedral groups.  相似文献   

12.
A graph is called hypohamiltonian if it is not hamiltonian but becomes hamiltonian if any vertex is removed. Many hypohamiltonian planar cubic graphs have been found, starting with constructions of Thomassen in 1981. However, all the examples found until now had 4‐cycles. In this note we present the first examples of hypohamiltonian planar cubic graphs with cyclic connectivity 5, and thus girth 5. We show by computer search that the smallest members of this class are three graphs with 76 vertices.  相似文献   

13.
路在平  徐明曜 《数学进展》2004,33(1):115-120
图X称为边正则图,若X的自同构群Aut(X)在X的边集上的作用是正则的.本文考察了三度边正则图与四度Cayley图的关系,给出了一个由四度Cayley图构造三度边正则图的方法,并且构造了边正则图的三个无限族.  相似文献   

14.
A regular graph X is called semisymmetric if it is edge-transitive but not vertex-transitive. For G ≤ AutX, we call a G-cover X semisymmetric if X is semisymmetric, and call a G-cover X one-regular if Aut X acts regularly on its arc-set. In this paper, we give the sufficient and necessary conditions for the existence of one-regular or semisymmetric Zn-Covers of K3,3. Also, an infinite family of semisymmetric Zn×Zn-covers of K3,3 are constructed.  相似文献   

15.
A graph is symmetric if its automorphism group acts transitively on the set of arcs of the graph. In this paper, we classify hexavalent symmetric graphs of order 9p for each prime p.  相似文献   

16.
Sanming Zhou   《Discrete Mathematics》2009,309(17):5404-5410
In this paper we give a classification of a family of symmetric graphs with complete 2-arc-transitive quotients. Of particular interest are two subfamilies of graphs which admit an arc-transitive action of a projective linear group. The graphs in these subfamilies can be defined in terms of the cross ratio of certain 4-tuples of elements of a finite projective line, and thus may be called the second type ‘cross ratio graphs’, which are different from the ‘cross ratio graphs’ studied in [A. Gardiner, C. E. Praeger, S. Zhou, Cross-ratio graphs, J. London Math. Soc. (2) 64 (2001), 257–272]. We also give a combinatorial characterisation of such second type cross ratio graphs.  相似文献   

17.
Erd?s and Hajnal conjectured that for every graph H there is a constant such that every graph G that does not have H as an induced subgraph contains a clique or a stable set of order . The conjecture would be false if we set ; however, in an asymptotic setting, we obtain this strengthened form of Erd?s and Hajnal's conjecture for almost every graph H, and in particular for a large class of graphs H defined by variants of the colouring number. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 343–361, 2014  相似文献   

18.
Let S be a set of n4 points in general position in the plane, and let h<n be the number of extreme points of S. We show how to construct a 3-connected plane graph with vertex set S, having max{3n/2,n+h−1} edges, and we prove that there is no 3-connected plane graph on top of S with a smaller number of edges. In particular, this implies that S admits a 3-connected cubic plane graph if and only if n4 is even and hn/2+1. The same bounds also hold when 3-edge-connectivity is considered. We also give a partial characterization of the point sets in the plane that can be the vertex set of a cubic plane graph.  相似文献   

19.
Let Г be a G-symmetric graph admitting a nontrivial G-invariant partition . Let Г be the quotient graph of Г with respect to . For each block B ∊ , the setwise stabiliser GB of B in G induces natural actions on B and on the neighbourhood Г (B) of B in Г . Let G(B) and G[B] be respectively the kernels of these actions. In this paper we study certain “local actions" induced by G(B) and G[B], such as the action of G[B] on B and the action of G(B) on Г (B), and their influence on the structure of Г. Supported by a Discovery Project Grant (DP0558677) from the Australian Research Council and a Melbourne Early Career Researcher Grant from The University of Melbourne.  相似文献   

20.
For graphs G and H , an H‐coloring of G is a map from the vertices of G to the vertices of H that preserves edge adjacency. We consider the following extremal enumerative question: for a given H , which connected n‐vertex graph with minimum degree δ maximizes the number of H‐colorings? We show that for nonregular H and sufficiently large n , the complete bipartite graph is the unique maximizer. As a corollary, for nonregular H and sufficiently large n the graph is the unique k‐connected graph that maximizes the number of H‐colorings among all k‐connected graphs. Finally, we show that this conclusion does not hold for all regular H by exhibiting a connected n‐vertex graph with minimum degree δ that has more ‐colorings (for sufficiently large q and n ) than .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号