首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A glassy carbon (GC) surface modified with monolayer of 4-bromophenyl was examined as voltammetric electrode for some redox systems. The modified electrode exhibited very slow electron transfer in comparison to the unmodified surface by factors which varied with the redox systems. However, after scanning the modified electrode in 0.1 M tetrabutylammonium tetrafluoroborate (TBABF4) in acetonitrile from 0.4 to −1.1 V vs. Ag/AgCl for 20–25 cycles, the modified electrode showed much faster electron transfer kinetics, e.g., the results for Fe(CN)6 3−/4− were approaching those observed with unmodified surfaces. The effect is attributed to an apparently irreversible structural change in the 4-bromophenyl monolayer, which increases the rate of electron tunneling. The transition to the conducting state is associated with electron injection into the monolayer and causes a significant decrease in the calculated HOMO-LUMO gap for the monolayer molecule. Once the monolayer is switched to the conducting state, it supports rapid electron exchange with the redox system, but not with dopamine, which requires adsorption to the electrode surface. A conductive surface modified electrode may have useful properties for electroanalytical applications and possibly in electrocatalysis. Correspondence: Abbas A. Rostami, Department of Chemistry, Faculty Basic of Science, University of Mazandaran, Babolsar, Iran.  相似文献   

2.
The results of our studies of the real surface impurity and phase compositions of Cd x Hg1 − x Te solid solutions and changes in the compositions induced by thermal evacuation and ion bombardment are presented. The impurity and phase compositions of the surface of CdHgTe solid solutions exposed to air included the gases and vapors (CO, O2, H2O) and hydrocarbons adsorbed from the atmosphere. Thermal vacuum treatment of the samples at 615 K led to surface purification from organic impurities, oxygen, water, and mercury microinclusions. The Cd x Hg1 − x Te sample surface was completely cleaned and its stoichiometric composition achieved by ion etching to a depth of 100 ?.  相似文献   

3.
The synergistic behavior of sodiumdodecylsulfate (SDS) and 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) binary mixtures has been studied with interfacial and pyrene fluorescence(I 1/ I 3) intensity measurements. From the interfacial data, the interfacial parameters; the maximum surface excess (Γmax), or the minimum area per molecule (A min), and the surface pressure at the critical micellar concentration (πcmc) have been evaluated. The cmc value has been used for evaluating the free energies of micellization (ΔG o m). The mixed micelle formation was evaluated with the help of the Clint equation. The SDS plus DHPC mixed micelles showed negative departure from ideality indicating synergistic interactions between the unlike components. The quantitative analysis of mixed micelle, mixed monolayer and the composition of the mixed micelle was carried out with the help of regular solution approximation. The interaction parameters, β and βσ, in the mixed micelle as well as in the mixed monolayer, respectively showed negative values indicating synergistic behavior of SDS and DHPC molecules.  相似文献   

4.
Lipid rafts are of a dynamic microdomain structure found in recent years,enriched in sphingolipids,cholesterol and particular proteins.The change of structure and function of lipid rafts could result in many diseases.In this work,the monolayer behavior of mixed systems of D-sphingosine with choles-terol was investigated in terms of the mean surface area per molecule(Am),excess molecular area(Aex),surface excess Gibbs energy(Gex),interaction parameter(ω),activity coefficients(1 and 2) as well as elasticity(C...  相似文献   

5.
Recently unveiled ‘alkali metal fluorosulphate (AMSO4F)’ class of compounds offers promising electrochemical and transport properties. Registering conductivity value as high as 10−7 S cm−1 in NaMSO4F phases, we explored the fluorosulphate group to design novel compounds with high Li-ion conductivity suitable for solid electrolyte applications. In the process, we produced sillimanite-structured LiZnSO4F by low temperature synthesis (T ≤ 300 °C). Examining this phase, we accidentally discovered the possibility of improving the ionic conductivity of poor conductors by forming a monolayer of ionic liquid at their particle surface. This phenomenon was studied by solid-state NMR, XPS and AC impedance spectroscopy techniques. Further, similar trends were noticed in other fluorosulphate materials like tavorite LiCoSO4F and triplite LiMnSO4F. With this study, we propose ‘ionic liquid grafting’ as an interfacial route to enable good Li-ion conductivity in otherwise poor conducting ceramics.  相似文献   

6.
By broadening the scope of the Einstein statistical-mechanical treatment of a crystalline solid to cover also low-index faces, and using the Lennard-Jones interaction potential and, in addition, adopting an approximate monolayer-nearest-neighbor model, we have calculated the thermodynamic properties of (100) and (111) single crystal faces of Xe(s) in the temperature range 20–80 K. The reversible cleavage work (that corresponds to the Gibbs σ-quantity of interfaces) was found to be on the order of 20–30 mJ m−2 and is largely due to reduction of the pair-wise dispersion interactions for monolayer atoms as compared with the atoms in the bulk of the crystal. For an unstrained crystal, σ diminishes slightly with temperature for both energetic as well as entropic reasons. On the other hand, the differential work of stretching a solid interface, γ, is a negative quantity (−5 to −30 mN m−1), corresponding to surface pressure, the main reason being that upon (elastic, homogeneous) stretching, the vibration energy levels of the top monolayer are shifted upward, at the same time becoming more closely spaced. It is shown that such a stretching operation causes the T × surface excess entropy term to increase at a faster rate than the corresponding surface energy term, which accounts for the negative sign found for γ. On the same basis, we can also verify that the general, though sometimes questioned, Shuttleworth relation, is necessarily fulfilled for an ideally terminated (metastable) Xe crystal face with a filled monolayer of immobile Xe atoms. As a matter of fact, this equation merely represents an alternative mathematical disguise of the basic energy differential expression for the monolayer.  相似文献   

7.
A CaCO3 filler was treated by generally used coupling agents and a special one — ethylene-octene copolymer (POE)-g-maleic anhydride (MAH). Fourier transform infrared spectroscopy (FTIR) results show that the special coupling agent POE-g-MAH, in a chemical reaction with CaCO3, can produce an interfacial layer stronger than simple physical adhesion attained with usual coupling agents. Inverse gas chromatography (IGC) was used to investigate the surface free energy of CaCO3 after surface modification and to optimize the monolayer content of coupling agents. Based on the IGC results, it can be deduced that the monolayer cover is around 1.9% for CaCO3 treated with a titanate coupling agent. Scanning electron microscope (SEM) observation results show that the separated morphology existed in the ternary composites containing CaCO3 after surface treatment with coupling agents, whereas the core-shell morphology was obtained in the ternary composites with POE-g-MAH. The encapsulation of the CaCO3 filler treated with POE-g-MAH was caused by the strong chemical reaction between the elastomer and CaCO3 particles. __________ Translated from Journal of Northwestern Polytechnical University, 2007, 25(2): 274–278 [译自: 西北工业大学学报]  相似文献   

8.
Compounds of composition Li x Na1 − x VWO6 (0 ≤ x ≤ 1), which are synthetic analogues of brannerite-type minerals, were produced for the first time by solid-state synthesis at high temperatures. The structure of the compounds and their unlimited miscibility in the solid phase in the LiVWO6-NaVWO6 binary system were determined by X-ray diffraction. The phase equilibrium diagram was studied by differential thermal analysis together with thermodynamic modeling. It was found that the system under investigation is described by the regular solid solutions model.  相似文献   

9.
The electrochemical solid phase micro-extraction of salicylic acid (SA) at graphite-epoxy-composed solid electrode surface was studied by cyclic voltammetry. SA was oxidized electrochemically in pH 12.0 aqueous solution at 0.70 V (vs. saturated calomel electrode) for 7 s. The oxidized product shows two surface-controlled reversible redox couples with two proton transferred in the pH range of 1.0∼6.0 and one proton transferred in the pH range of 10.0∼13.0 and is extracted on the electrode surface with a kinetic Boltzman function of i p = 3.473–4.499/[1 + e(t − 7.332)/6.123] (χ 2 = 0.00285 μA). The anodic peak current of the extracted specie in differential pulse voltammograms is proportional to the concentration of SA with regression equation of i p = −5.913 + 0.4843 c (R = 0.995, SD = 1.6 μA) in the range of 5.00∼200 μM. The detection limit is 5.00 μM with RSD of 1.59% at 60 μM. The method is sensitive and convenient and was applied to the detection of SA in mouse blood samples with satisfactory results.  相似文献   

10.
The aim of this article is the evaluation of Ca2+ and Mg2+ subphases presence effect on mixed monolayers composed by dehydrocholic acid (HDHC) and didodecyldimethylammonium bromide (DDAB). The monolayer stability was analyzed by the evaluation of thermodynamic parameters, ΔG mixE and α. At all calcium ion-tested concentration, the mixed systems X HDHC = 0.6 and 0.8 at π = 30 mJ m−2 were always the most favored proportions. The X HDHC = 0.6 system was also stable in magnesium presence, and the X HDHC = 0.2-mixed monolayer went through a stable to an unstable state as the content of Ca2+ or Mg2+ augment. Finally, the X HDHC = 0.4 monolayer showed a particular behavior, i.e., remained stable at low cation concentration, unstable at intermediate concentration and stable again at high concentration. The effect was similar at Mg2+ presence.  相似文献   

11.
The Cu-Bi-Se system was studied using DTA, X-ray powder diffraction, and electromotive force (e.m.f.) measurements in (−) Cu (solid)|Cu4RbCl3I2 (solid)|(Cu in alloy) (solid) (+) concentration cells in the range 300–430 K. Polythermal sections and a 300-K isothermal section of the phase diagram are constructed, as well as a liquidus surface projection. The existence of ternary compounds CuBi3Se5, CuBiSe2, and Cu3BiSe3 is verified, and phase fields involving them are established. Primary separation fields and the types and coordinates of invariant and monovariant equilibria are determined. E.m.f. data were used to calculate partial molar functions $ (\Delta \bar G,\Delta \bar H,\Delta \bar S) $ (\Delta \bar G,\Delta \bar H,\Delta \bar S) of copper in alloys and the standard thermodynamic functions of formation and entropies of the ternary compounds and the end-member (Cu9BiSe6) of solid solutions based on the low-temperature Cu2Se phase.  相似文献   

12.
DSC method was used to study thermal stability of nitrocompounds. It was assumed the model to estimate stability of solid phase in which perfect solid phase is totally stable and amorphous-liquid domains connected with impurities decompose according to the kinetic model determined for the liquid phase above the melting point. The influence of sample purity on relative stability, which is k l/k s — ratio of decomposition rate constants in liquid and solid phase, at temperature 20 K below the melting point was predicted. The increase of liquid domains in solid phase causes decrease of k l/k s ratio (relative stability) at chosen temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The present work deals with the interactions between carbon dioxide, used as pressure medium, either in the gas state (GCO2) or in the supercritical state (SCCO2) and amphiphilic di-block copolymers PEOm-b-PMA(Az)n. The effect of pressure on the isotropic transition of the PEOm-b-PMA(Az)n copolymer was investigated using scanning transitiometry (ST). The experimental results were compared with those measured when using ‘relatively inert’ mercury (Hg) as pressure medium. Morphological observation of a PEOm-b-PMA(Az)n thin film submitted to SCCO2 was performed by atomic force microscopy (AFM) to investigate the nano-structure organization. These results indicate the possibility of modifying the nano-structure in a specific way depending on the CO2 physical state.  相似文献   

14.
The surface property of an amphiphilic cyclodextrin 2-O-(hydroxypropyl-N,N-dimethyl-N-dodecylammonio)-β-cyclodextrin (HPDMA-C12-CD) was investigated using oscillating bubble rheometer and electrical conductivity method at different temperatures. The surface tension and dilational viscoelasticity of HPDMA-C12-CD were provided. The results showed that HPDMA-C12-CD could adsorb on the air–water interface, which decreased the surface tension of water efficiently. Critical micelle concentration (cmc) can be clearly defined from the surface tension isotherm. pC20 and π cmc were derived from the surface tension isotherms as well. The thermodynamic parameters (ΔG   0 m  , ΔH   0 m  , −TΔS   0 m) derived from electrical conductivity indicated that the micellization of HPDMA-C12-CD was entropy-driven at lower temperature, while it was enthalpy-driven at higher temperature. The dilational modulus appeared a maximum value while the phase angle appeared two maxima as a function of HPDMA-C12-CD concentration.  相似文献   

15.
By using the binary anionic/cationic surfactants system CH3(CH2)nOSO_3/CH3(CH2)nN (CH3)3 as an ex-ample, the molecular exchanging energy (ε) of adsorption on the surface monolayer of aqueous solu-tion has been studied. ε can be obtained with two methods. One is from the relationship between ε and the molecule interaction parameter (β). This relationship is founded by considering that the adsorption of mixed surfactants on the surface monolayer of solution satisfies the dimensional crystal model condition under which β can be obtained by testing the surface tension of solution. The other is directly from the molecular structure of surfactants with the Lennard-Jones formula. The results for the studied system show that these two methods coincide well.  相似文献   

16.
The complexation of As(V) in aqueous solutions in the presence of iron(III) was investigated spectrophotometrically with both variable and constant ionic strengths. The determined thermodynamic and stoichiometric formation constants of the FeHAsO4+ species are log10β = 9.21± 0.01 and log10Iβ (1.0mol⋅dm−3 NaClO4) = 7.78 ± 0.01, respectively. The numerical treatment of the obtained spectral data was performed with the SPECA program. The analysis required the consideration of the hydrolysis of Fe(III) and the protonation of As(V) in the pH range studied. No significant hydrolysis was observed because of the low pH values (pH < 2.5) involved. The stabilities of the solid Fe(III) arsenates was established by solubility experiments. All of the solubility experiments were performed in aqueous NaClO4 solutions at constant ionic strength (1.0mol⋅dm−3) and at 25C. The experimental data were consistent with FeAsO4⋅2H2O being the solid phase (log10 Kso = −24.30± 0.08). The corresponding thermodynamic constants were computed by means of the Modified Bromley's Methodology (MBM) that describes the variation of the activity coefficients of all of the ions involved in the complexation and precipitation equilibria with the medium and ionic strength. Finally, the solid phase obtained in this work was also characterized by FT-IR and FT-Raman spectroscopies, and the hydration of the solid iron arsenate was confirmed by X-ray diffraction data.  相似文献   

17.
The interfacial effects of two bile salts (sodium deoxycholate (NaDC) and sodium dehydrocholate (NaDHC)) in a catanionic mixed adsorbed monolayer have been investigated at 25 °C. The surfactant interfacial composition, the interfacial orientation of the molecules and the energy changes are analysed to show a thermodynamic evidence of the hydrophobic BSs effect during its intercalation into interfacial adsorbed didodecyldimethyl ammonium bromide (DDAB) molecules. Both mixed systems (NaDC–DDAB and NaDHC–DDAB) have analogous adsorption efficiencies, which are similar from a pure DDAB monolayer and superior to that obtained for both bile salts molecules. Nevertheless, their adsorption effectiveness is different: NaDC causes an increment of Γ while NaDHC produces the opposite effect. The adsorption efficiency in surface tension reduction is due to the existence of interfacial synergistic interactions (confirmed by the analysis of β γ and ΔG ad 0 values). Maximum synergistic interaction is seen for α BSs = 0.4. The hydrophobic steroid backbone of NaDHC molecule presents a deep interfacial penetration than NaDC. This fact causes a great disturbance of DDAB hydrocarbon tails and conduces to a large separation of molecules (high A m values) which explains the reduction of adsorption effectiveness (low Γ m values).  相似文献   

18.
In this work we are concerned with the study of long-term relaxation phenomena in dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers spread at the air–water interface as a function of the surface pressure and the aqueous phase pH (pH 5, 7, and 9). Long-term relaxation phenomena were determined in an automated Langmuir-type film balance at constant temperature (20 °C). Two kinds of experiments were performed to analyze relaxation mechanisms. In one, the surface pressure (π) was kept constant, and the area (A) was measured as a function of time (θ). In the second, the area was kept constant at monolayer collapse and the surface pressure was decreased. This decrease was measured as a function of time. Various relaxation mechanisms, including monolayer molecular loss by dissolution, collapse, and/or organization/reorganization changes, can be fitted to the results derived from these experiments. These relaxation mechanisms are pH and phospholipid dependent. In the discussion, special attention will be given to the effect of the relaxation phenomena on the hysteresis in πA isotherms before and after the relaxation experiment. At π lower than the equilibrium spreading pressure (πe) the relaxation phenomena are mainly due to the loss of DPPC or DOPC molecules by desorption into the bulk aqueous phase. The formation of interfacial macroscopic vesicles, which are dissolved into the bulk phase, makes the phospholipid monolayer molecular loss irreversible. At the collapse point (at π > πe), the relaxation phenomena may be due either to collapse for DPPC and/or to a complex mechanism including competition between desorption and monolayer collapse for DOPC.  相似文献   

19.
A synthesis method with the use of polymer-salt compositions (calcination temperature 800°C) provides the preparation of various solid solutions of a La1−x Ca x FeO3−δ series in the 0≤ x≤ 0.7 range, which belong to the perovskite structure type. A morphotropic phase transition occurs from the orthorhombic perovskite modification (0≤ x ≤ 0.4) to the cubic one (0.5 ≤ x≤ 0.7). A growing number of microdistortions in the perovskite structure and the formation of a microblock structure in the morphotropic phase transition region are observed with increasing degree of calcium substitution for lanthanum. Calcination of solid solutions with x = 0.6 and 0.7 at temperatures above 1000°C in the air or under conditions of reduced oxygen partial pressure (laboratory vacuum of 10−3 Torr) results in the formation of a nanostructured state with coherently grown blocks of perovskite and Grenier phase, which is due to irreversible oxygen loss.  相似文献   

20.
A series of N-alkyl-N-alkyl′-pyrrolidinium-bis(trifluoromethanesulfonyl) imide (TFSI) room temperature ionic liquids (RTILs) has been investigated by means of thermogravimetric analysis (TG), differential scanning calorimetry, FT-IR spectroscopy, and X-ray diffraction analysis. These compounds exhibit a thermal stability up to 548–573 K. The mass loss starting temperature, T ml, falls in a narrow range of temperatures: 578–594 K. FT-IR spectra, performed before and after 24 h isothermal experiments at 553 and 573 K, have confirmed their great thermal stability. Below the ambient temperature, these compounds exhibit a complex behavior. N-methyl-N-propyl-pyrrolidinium-TFSI is the sole liquid which crystallizes without forming any amorphous phase even after quenching in liquid nitrogen. Its crystalline phase has a melting point, T m, of 283 ± 1 K. When the amorphous solid is heated, the N-butyl-N-ethyl-pyrrolidinium-TFSI presents a glass transition temperature, T g, at 186 K followed by a cold crystallization, T cc, at 225 K, and a final T m at 262 K. The N-butyl-N-methyl-pyrrolidinium-TFSI exhibits a T g between 186 and 181 K, its cold crystallization leading to two different solid phases. Solid phase I has a melting point T I,m = 252 K and phase II, T II,m = 262 K. When the amorphous phase is obtained at a cooling rate of 10 K/min, its T cc is 204 K, and a metastable solid phase (III) is obtained which transforms into the phase II at 226 K. However, when the sample is quenched, the amorphous phase transforms into phase II at T cc = 217 K and phase I at 239 K. P15-TFSI exhibits the most complicated pattern as, on cooling, it leads to both a crystallized phase at 237 K and an amorphous phase at 191 K. On heating, after a T g at 186 K and a T cc at 217 K, two solid–solid phase transitions are observed at 239 K and 270 K, the final T m being 279 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号