首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lignins from the liquors in the organosolv pulping of aspen wood treated with wood-destroying fungi have been investigated using quantitative1H and13C NMR spectroscopy and exclusion liquid chromatography. It has been shown that the biodegradation of lignin takes place in different ways according to the complex of enzymes produced by the fungi. Phanerochaete sanguinea causes degradation through predominant cleavage at alkyl-phenyl bonds, and Trametes villosus at the C-C bonds of the aliphatic chain. In addition to degradation reactions, polymerization (condensation) reactions also take place with the appearance of new Car-O-C and Car-C bonds. It has been established that the biological pretreatment of aspen wood ensuring partial degradation of the lignin leads to its more ready extraction in the process of organosolv pulping.Wood Chemistry Division of the Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 603–610, July–August, 1995. Original article submitted May 23, 1994.  相似文献   

2.
A 19F NMR study of the transmission of electronic effects has been made for the systems Ar2EC6H4F-4 (E = Sb, Bi, CH, N). The fluorine chemical shifts obtained are correlated with the polar constants (Σσo and Σσ) of the substituents, suggesting that electronic effects are transmitted through the SbCar, BiCar and CCar bonds predominantly by an inductive mechanism, whereas the transmission through the NCar bonds is contributed to significantly by classical resonance effects due to competitive conjugation of the lone pair with the aromatic rings, and the substituents therein. A dual parameter correlation of the fluorine chemical shifts with the inductive (σI) and resonance (σoR and σR) parameters of the substituents in the aromatic rings has led to similar conclusions. The inductive transmission through the bridging Sb and Bi atoms has been assigned to the absence of conjugation of lone pair and vacant d-orbitals of the metals with π-electron systems of the aromatic rings. On the basis of the values of the ? coefficients for the correlation equations obtained it has been established that the transmitting ability of the BiCar bonds is close to that of the CalCar bonds and considerably lower than the transmitting ability of the NCar bonds.  相似文献   

3.
The lignin of mechanically ground aspen wood and lignins isolated from aspen wood attacked by the fungusPhanerochaete sanguinea have been investigated by quantitative1H and13C NMR spectroscopies. It has been shown that the biodestruction of the lignin takes place through the cleavage of alkyl-aryl and aryl-aryl bonds and is accompanied by demethylation (demethoxylation) reactions, and the oxidation of Cα and Cγ atoms. In addition to reactions in which the C—C bonds are cleaved, the formation of ether bonds has been observed. An interconnection has been shown between the variations in the amount of functional groups, fragments, and the bonds in biolignins and the loss in mass of the wood. A method is proposed for evaluating the carbohydrate content in lignin preparations using the NMR method.  相似文献   

4.
The high molecular weight material lignin consists of phenylpropane units linked together by a variety of bond types. During the past eight years, two newly developed degradation procedures have permitted the first direct determinations of the nature of these bonds. The first procedure affords a very mild partial hydrolysis of benzyl ether bonds. Eleven dimeric, trimeric, and tetrameric degradation products were obtained in this way from spruce and beech lignin: they exhibited three different kinds of bonds between the C9 structural units, and their structures have all been elucidated. In the second procedure, the most important kind of bond in lignin, i. e. the arylglycerol-β-aryl ether bond, can be subjected to directed cleavage under mild conditions after introduction of a suitable neighboring group. On application to beech lignin, 91 % of the material was degraded giving monomeric to tetrameric phenols. Complete structural elucidation of the twenty dimeric phenols isolated and a knowledge of their relative yields and the yields of the other fractions obtained by gel filtration permitted a structural scheme to be set up for beech lignin in which the C9 structural units are linked together by no less then ten different kinds of bonds. The structural scheme, which can be readily explained biogenetically, has the same elemental composition as natural beech lignin. Further support for the structural scheme comes from a comparison of the 13C-NMR spectrum of natural beech lignin and a 13C-NMR spectrum calculated for the proposed structure on the basis of about fifty lignin model substances.  相似文献   

5.
Wang  Qing  Liu  Ying  Xu  Fang  Liu  Qi  Cui  Da 《Journal of Thermal Analysis and Calorimetry》2019,136(4):1631-1643

The cleavage behavior of covalent bonds in Xilinguole (XLGL) lignite and changes in chemical structure of lignite and its chars during low-temperature pyrolysis were investigated by thermogravimetric (TG) analysis and Fourier-transform infrared (FTIR) spectroscopy. Based on the TG and differential thermogravimetric (DTG) analysis results, the cleavage of different types of chemical bonds in lignite occurred mainly at four certain temperatures, 170 °C, 376 °C, 432 °C, and 521 °C. The latter three were selected as the final pyrolysis temperatures of chars evaluated in this study. The FTIR analysis results indicate that thermal treatment increased the relative content of two and three adjacent H deformation structures but decreased that of four adjacent H deformation structure. This was caused by the cleavage of Cal–Cal and Car–Cal bonds. The oxygen-containing functional groups in lignite are dominated by C–O and C–OH groups with a lower chemical reactivity than C=O–C and conjugated C=O groups. Moreover, XLGL lignite has the highest ratio of CH2/CH3 which declines with increasing temperature, indicating the decrease in the length of aliphatic chains and increase in the degree of branching of aliphatic side chains. This change mainly resulted from the cleavage of Cal–O, Cal–Cal, and Car–Cal bonds. Furthermore, XLGL lignite and its chars contain five specific hydrogen bonds: OH–N, cyclic OH, OH–ether O, OH–OH, and OH–π hydrogen bonds. The relative content of OH–OH hydrogen bond was the highest, indicating that OH–OH hydrogen bond has the highest thermal stability.

  相似文献   

6.
Abstract

The conformational behaviour of a series of ring substituted (ortho-Cl, F and meta or para OH) Pt(II) complexes of general formula [(1,2-hydroxyphenyl)ethylenediamine]PtL2 [L ? Cl, 1] has been studied by molecular mechanics (MM) methods. Preferred orientations of the phenyl rings, which are important for the complexes′ biological activity, were obtained by calculations of rotational energies about Csp3?Car bonds for all theoretically possible isomers and conformers, meso-λ (R,S/S,R-λ), meso-δ (R,S/S,R-δ), d,l-δ (S,S/R,R-λ) and d,l-λ (S,S/R, R-δ). The influence of the ring substituents and the conformation type on the positions of the energy minima and barriers to rotations about Csp3?Car and Car-O(H) bonds were investigated in detail. Theoretical predictions were compared with the experimental results where appropriate.  相似文献   

7.
The lignin of mechanically ground aspen wood and lignins isolated from aspen wood attacked by the fungusPhanerochaete sanguinea have been investigated by quantitative1H and13C NMR spectroscopies. It has been shown that the biodestruction of the lignin takes place through the cleavage of alkyl-aryl and aryl-aryl bonds and is accompanied by demethylation (demethoxylation) reactions, and the oxidation of C and C atoms. In addition to reactions in which the C—C bonds are cleaved, the formation of ether bonds has been observed. An interconnection has been shown between the variations in the amount of functional groups, fragments, and the bonds in biolignins and the loss in mass of the wood. A method is proposed for evaluating the carbohydrate content in lignin preparations using the NMR method.Wood Chemistry Branch of the Institute of Organic Chemistry, Siberian Division of the Russian Academy of Sciences, Irkutsk. Irkutsk State University. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 547–557, July–August, 1994.  相似文献   

8.
The title compound, C18H26N2S22+·2I·2C3H6O, is an intermediate in the design of the zwitterionic thiolate 4‐(trimethylammonio)benzenethiolate (Tab), in which a pair of aryl‐substituted S atoms are linked by a covalent bond. The central S—S bond length is 2.020 (3) Å and the Car—S—S—Car torsion angle is −84.1 (2)°. The crystal structure is stabilized by nonclassical hydrogen bonds which occur as intramolecular C—H...I interactions and intermolecular C—H...S and C—H...O contacts. In the crystal structure, both the dication and the two symmetrically independent iodide counter‐anions are located on twofold crystallographic axes, whereas the acetone solvent molecule occupies a general position.  相似文献   

9.
《中国化学快报》2023,34(1):107298
Photocatalytic selective transform native lignin into valuable chemicals is an attractive but challenging task. Herein, we report a mesoporous sulfur-doped carbon nitride (MSCN-0.5) which is prepared by a facile one-step thermal condensation strategy. It is highly active and selective for the cleavage Cα?Cβ bond in β?O?4 lignin model compound under visible light radiation at room temperature, achieving 99% substrate conversion and 98% Cα?Cβ bond cleavage selectivity. Mechanistic studies revealed that the Cβ?H bond of lignin model compounds activated by holes and generate key Cβ radical intermediates, further induced the Cα?Cβ bond cleavage by superoxide anion radicals (?O2?) to produce aromatic oxygenates. Waste Camellia oleifera shell (WCOS) was taken as a representative to further understand the reaction mechanisms on native lignin. 33.2 mg of monophenolic compounds (Vanillin accounted for 22% and Syringaldehyde for 34%) can be obtained by each gram of WCOS lignin, which is 2.5 times as that of the pristine carbon nitride. The present work offers useful guidance for designing metal-free heterogeneous photocatalysts for Cα?Cβ bond cleavage to harvest monophenolic compounds.  相似文献   

10.
《中国化学快报》2022,33(9):4357-4362
Selective cleavage of robust C?C bonds to harvest value-added aromatic oxygenates is an intriguing but challenging task in lignin depolymerization. Photocatalysis is a promising technology with the advantages of mild reaction conditions and strong sustainability. Herein, we show a novel urchin-like Nb2O5 hollow microsphere (U-Nb2O5 HM), prepared by one-pot hydrothermal method, are highly active and selective for Cα?Cβ bond cleavage of lignin β-O-4 model compounds under mild conditions, achieving 94% substrate conversion and 96% C?C bond cleavage selectivity. Systematic experimental studies and density functional theory (DFT) calculations revealed that the superior performance of U-Nb2O5 HMs arises from more exposed active sites, more efficient free charge separation and the active (001) facet, which facilitates the activation of Cβ?H bond of lignin models and generate key Cβ radical intermediates by photogenerated holes, further inducing the Cα?Cβ bond cleavage to produce aromatic oxygenates. This work could provide some suggestions for the fabrication of hierarchical photocatalysts in the lignin depolymerization system.  相似文献   

11.
We describe an intramolecular version of the natural energy decomposition analysis (NEDA), with the aim of evaluating interactions between molecular fragments across covalent bonds. The electronic energy in intramolecular natural energy decomposition analysis (INEDA) is divided into electrical, core, and charge transfer components. The INEDA method describes the fragments using the nonfragmented electronic density, and, therefore, there are no limitations in how to choose the boundary orbital. We used INEDA to evaluate the interaction energies that give origin to barriers of rotation around Camide Caromatic (Cam Car) and Namide Caromtaic (Nam Car) bonds in arylamide‐foldamer building blocks. We found that differences of barrier height between models with different ortho‐aryl substituents stem from charge transfer and core interactions. In three‐center hydrogen‐bond (H‐bond) models with an NH proton donor H‐bound to two electronegative ortho‐aryl substituents, the interaction energy of the three‐center system is larger than in either of the two‐center H‐bond subsystem alone, indicating an increase of overall rigidity. The combination of INEDA and NEDA allows the evaluation of intermolecular and intramolecular interactions using a consistent theoretical framework. © 2018 Wiley Periodicals, Inc.  相似文献   

12.
Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important. Previously, we found that NbOx species played a key role in the activation and cleavage of C–O bonds in lignin and its model compounds. In this study, commercial niobic acid (HY-340), niobium phosphate (NbPO-CBMM) and lab-made layered niobium oxide (Nb2O5-Layer) were chosen as supports to study the effect of Brönsted and Lewis acids on the activation of C–O bonds in lignin conversion. A variety of Ru-loaded, Nb-based catalysts with different Ru particle sizes were prepared and applied to the conversion of p-cresol. The results show that all the Ru/Nb-based catalysts produce high mole yields of C7–C9 hydrocarbons (82.3–99.1%). What's more, Ru/Nb2O5-Layer affords the best mole yield of C7–C9 hydrocarbons and selectivity for C7–C9 aromatic hydrocarbons, of up to 99.1% and 88.0%, respectively. Moreover, it was found that Lewis acid sites play important roles in the depolymerization of enzymatic lignin into phenolic monomers and the cleavage of the C–O bond of phenols. Additionally, the electronic state and particle size of Ru are significant factors which influence the selectivity for aromatic hydrocarbons. A partial positive charge on the metallic Ru surface and a smaller Ru particle size are beneficial in improving the selectivity for aromatic hydrocarbons.  相似文献   

13.
The activation and cleavage of C–C bonds remains a critical scientific issue in many organic reactions and is an unmet challenge due to their intrinsic inertness and ubiquity. Meanwhile, it is crucial for the valorization of lignin into high-value chemicals. Here, we proposed a novel strategy to enhance the Caromatic–Cα bond cleavage by pre-functionalization with amine sources, in which an active amine intermediate is first formed through Markovnikov hydroamination to reduce the dissociation energy of the Caromatic–Cα bond which is then cleaved to form target chemicals. More importantly, this strategy provides a method to achieve the maximum utilization of the aromatic nucleus and side chains in lignin or its platform molecules. Phenols and N,N-dimethylethylamine compounds with high yields were produced from herbaceous lignin or the p-coumaric acid monomer in the presence of industrially available dimethylamine (DMA).

Pre-functionalization with amine sources mediated the cleavage of Caromatic–Cα bonds to produce two valuable chemicals with high yields, for the full utilization of the aromatic rings and side-chains in lignin and its platform molecules.  相似文献   

14.
Steam-exploded lignin (SEL) was separated from cornstalk residue, which came from steam-exploded cornstalk after enzymatic hydrolysis. There are two methods to acquire SEL, the alkali solution and the organic solvent method. SEL was analyzed with respect to the elementary composition, molecular weight, IR spectrum, and 13C NMR spectra. The C9-formula of SEL was calculated from the experiment data. According to 13C NMR, SEL can be classified as a “GSH” type of lignin, and it is composed mainly of β-O-4 ether bonds together with β-5 and β-1 carbon-carbon linkages between the lignin structural units.  相似文献   

15.
Unusual cleavage of P?C and C?H bonds of the P2N2 ligand, in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P‐tridentate coordination mode. The structures of both the heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P?C/C?H bond cleavage, which involves C?H bond cleavage, hydride rotation, Ni?C/P?H bond formation, and P?C bond cleavage.  相似文献   

16.
The molecular and crystal structures of the title compound, C19H18N2O, were determined and characterized by single crystal X-ray diffraction and spectroscopic methods. Details of the molecular geometry imply that there is a mesomeric effect between the electron-withdrawing N atoms of nitrile substituents and electron-donating O atom. Formally, single central O–Car bond lengths are considerably different from each other. O–Car distance to phthalonitrile ring is shorter than the other O–Car distance due to mesomeric effect under discussion. In addition to structural and spectral evidences, possible results from mesomerism of the compound were investigated by topological analysis on the electronic properties using quantum theory of atoms in molecules (QTAIM) approach. It is inferred from topological analysis that the nitrile group in para position has slightly stronger mesomeric effect than that in meta position due to diffusive double charge separation property during meta mesomerism of the compound. Mesomeric effect revealing itself by differences in delocalization indices between certain bonded atom pairs results in considerable decrease in aromaticity of phthalonitrile ring.  相似文献   

17.
The search for novel, atom-economic methods for the formation of C–C bonds is of crucial importance in synthetic chemistry. Especially attractive are reactions where C–C bonds are formed through C–H activation, but the coupling of unactivated, alkane-type Csp3–H bonds remains an unsolved challenge. Here, we report iridium-mediated intramolecular coupling reactions involving up to four unactivated Csp3–H bonds to give carbon–carbon double bonds under the extrusion of dihydrogen. The reaction described herein is completely reversible and the direction can be controlled by altering the reaction conditions. With a hydrogen acceptor present a C–C double bond is formed, while reacting under dihydrogen pressure leads to the reverse process, with some of the steps representing net Csp3–Csp3 bond cleavage. Mechanistic investigations revealed a conceptually-novel overall reactivity pattern where insertion or deinsertion of an Ir carbene moiety, formed via double C–H activation, into an Ir–C bond is responsible for the key C–C bond formation and cleavage steps.  相似文献   

18.
The electron-impact induced fragmentation of 3,5-diphenyl-1,2,4-oxadiazole has been investigated by labelling experiments, defocused metastable ion detections and high resolution mass measurements. The main fragmentation process suggests heterocyclic cleavage at the 1 to 5 and 3 to 4 bonds confirming our previous interpretation. The structure of the major fragment ion [C7H5NO]+· has been interpreted as being represented by the isomeric benzonitrile oxide and phenylisocyanate structures, the latter isomerising irreversibly from the former. The benzonitrile oxide structure is consistent with [C7H5NO]+· formation by cleavage of the 1 to 5 and 3 to 4 bonds.  相似文献   

19.
Single‐crystal X‐ray characterization of cationic (α‐diimine)Ni‐ethyl and isopropyl β‐agostic complexes, which are key intermediates in olefin polymerization and oligomerization, are presented. The sharp Ni‐Cα‐Cβ angles (75.0(3)° and 74.57(18)°) and short Cα−Cβ distances (1.468(7) and 1.487(5) Å) provide unambiguous evidence for a β‐agostic interaction. An inverse equilibrium isotope effect (EIE) for ligand coordination upon cleavage of the agostic bond highlights the weaker bond strength of Ni−H relative to the C−H bond. An Eyring plot for β‐hydride elimination–olefin rotation–reinsertion is constructed from variable‐temperature NMR spectra with 13C‐labeled agostic complexes. The enthalpy of activation (ΔH ) for β‐H elimination is 13.2 kcal mol−1. These results offer important mechanistic insight into two critical steps in polymerization: ligand association upon cleavage of the β‐agostic bonds and chain‐migration via β‐H elimination.  相似文献   

20.
The electron impact mass spectra of 1-R-substituted 3-alkoxy-2-(propargylsulfanyl)- and 3-alkoxy-2-(allenylsulfanyl)-1H-pyrroles (R = Me, i-Pr, s-Bu, Ph) have been studied for the first time. These compounds give rise to stable molecular ions whose primary fragmentation follows three competing pathways: cleavage of the C–O bonds with expulsion of alkyl radical, cleavage of the C–S bonds with formation of [M–C3H3]+ ions, and cleavage of the C–N bonds with synchronous hydrogen transfer to give odd-electron [M–CnH2n]+ · ion. The main fragmentation pathway of 2-(propargylsulfanyl) derivatives is cleavage of the C–S bond with formation of [M–C3H3]+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号