首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(styrene-co-divinylbenzene) particles possessing uniform properties are attractive for various chromatographic applications. However, their preparation by dispersion polymerization is rather complicated. Our aim was to prepare monodisperse PS microspheres by dispersion polymerization of styrene with controlled addition of 1 wt % of divinyl benzene. The reaction occurs in a mixture of ethanol with 2-methoxyethanol or 2-ethoxyethanol and is stabilized and initiated by hydroxypropyl cellulose and dibenzoyl peroxide, respectively. The effects of the medium polarity based on changing of the solvent mixture ratio and several modes of divinyl benzene addition, including simple one-shot and continuous divinyl benzene post-addition, on the particle size and morphology are investigated. Slow continuous dosing of 1 wt % of divinyl benzene one hour after the start of the styrene polymerization produce monodisperse spherical PS particles 5.4 μm in size. Such microspheres might be suitable as precursor for a solid adsorbent for harmful and carcinogenic organic vapors.  相似文献   

2.
Hollow micron-sized poly(styrene-co-divinylbenzene) particles were produced in seeded emulsions in the presence of swelling solvents. The size and morphology of the resulting polymer particles can be altered by varying swelling solvent in seeded polymerization at elevated temperature. The effects of swelling agents, including hydrophobic solvents, hydrophilic solvents and solvent mixtures, on the microstructure of particles were investigated. The formation of hollow poly(styrene-co-divinylbenzene) particles depended significantly on a fast and effective phase separation between the cross-linked shell and the swollen core, that occurred only in the presence of an appropriate swelling solvent.  相似文献   

3.
Monolithic columns based on copolymer of divinylbenzene (DVB), ethylvinylbenzene (EVB), and 2-hydroxyethyl methacrylate (HEMA) were prepared and applied to the separation of low-molecular-weight aromatic compounds. The monoliths were synthesized via thermally initiated free-radical polymerization in confines of stainless steel tubes with dimensions of 100 × 4.3 mm. In order to compensate for the polymer shrinkage during the synthesis and prevent the monolith from detachment from the column wall, the polymerization was conducted under nitrogen pressure. The excess pressure was varied from 0 bar to 9 bar. The synthesis under pressure was shown to improve the peak shapes and column efficiency in comparison with the synthesis in the closed tube. The optimum pressure for poly(DVB-co-EVB-co-HEMA) monoliths was found to be 3 bar. The efficiency of the column obtained at 3 bar is 13 500 TP/m for propylbenzene (k′ = 6) and 38 300 TP/m for uracil (k′ = 0).  相似文献   

4.
Poly(styrene-co-divinylbenzene) microspheres having a diameter range of 3.0–4.5 µm were synthesized by precipitation polymerization under various conditions, then the effects of the polymerization parameters such as monomer and initiator concentration, and used cosolvents on the characteristics of the final particles were compared with those in dispersion polymerization. It was found that precipitation polymerization is more sensitive to polymerization conditions than dispersion polymerization, and that precise control of polymerization parameters is therefore essential for individually stable spherical particles. Monomer and initiator concentration, and the use of cosolvents significantly vary the morphology and the size of the final particles. However, the uniformity of the microspheres is not greatly affected by the polymerization parameters.  相似文献   

5.
Chemical based approach for the synthesis of poly(styrene-co-acrylonitrile)/ZnO nanocomposites with different ZnO nanoparticle content by in situ emulsion polymerization is discussed. A significant increase in the thermal degradation temperature, melting and crystallization temperatures in all nanocomposite is observed. Increasing ZnO loading to polymer matrix enhances the flame retardant ability of polymer matrix with an appreciable increase in thermal degradation temperature of pristine polymer.  相似文献   

6.
陈栋梁 《高分子科学》2016,34(5):594-605
In order to exploit the biological functions of materials, a series of new random terpolymers were synthesized by the ring-opening polymerization of p-dioxanone, trimethylene carbonate, and L-phenylalanine N-carboxyanhydride (L-Phe- NCA) in the presence of stannous octoate. The terpolymers were characterized by 1H-NMR, 13C-NMR, FTIR, and gel permeation chromatography. The effects of the reactant ratio, catalyst dosage, reaction temperature and time on the copolymerization were investigated, and were found to regulate the composition of the terpolymer. Increases in the reaction temperature, polymerization time, L-Phe-NCA monomer amount, and catalyst content generated a product with a slightly decreased molecular weight. The crystallinity of the terpolymer was investigated by differential scanning calorimetry and polarized optical microscopy. A reasonable mechanism for the polymerization was proposed based on the obtained results.  相似文献   

7.
Poly (styrene-co-acrylonitrile) (SAN) is a hydrophilic non-crystalline copolymer, which is initially used in this paper to improve the hydrophilicity of poly (vinylidene fluoride) (PVDF). Investigation of the crystallization behavior of PVDF/SAN blends showed that the samples presented only α phase regardless of SAN content as cooling from the melt. A double-melting phenomenon was related to the perfection or crystal size of PVDF crystals. As the SAN content is increasing, crystallization of PVDF was limited, leading to a decreased crystallinity and lamellar growth. Besides, the hydrophilicity of PVDF was improved by blending with SAN. The sample containing 70 wt.% SAN performed a similar surface property of the neat SAN owing to the besieging of the PVDF phase by SAN. Observed from the cross section of the blends, PVDF/SAN blends were partially miscible with less than 50 wt.% SAN addition. As the SAN content was more than 50 wt.%, the crystalline PVDF particles clearly dispersed in the amorphous matrix.  相似文献   

8.
杜滨阳 《高分子科学》2011,29(4):439-449
Utilizing the hydrolysis and condensation of the methoxysilyl moieties, organic-inorganic hybrid poly(N-isopropylacrylamide-co-acrylamide-co-3-(trimethoxysilyl)propylmethacrylate) P(NIPAM-co-AM-co-TMSPMA) microgels were prepared via two different methods. The first method was that the microgels were post-fabricated from the crosslinkable linear P(NIPAM-co-AM-co-TMSPMA) terpolymer aqueous solutions above the lower critical solution temperature (LCST) of the terpolymer. For the second method, the microgels were directly synthesized by conventional surfactant free emulsion copolymerization of NIPAM, AM, and TMSPMA. The hydrodynamic diameter and stability of the resultant P(NIPAM-co-AM-co-TMSPMA) microgels strongly depend on the pH and temperature of the microgel aqueous solution. The hydrodynamic diameters of the microgels decreased with increasing the measuring temperature. The phase transition temperature of the microgels was found to be around 34°C, which was independent of the initial terpolymer concentration and shifted to lower temperature with increasing the preparation temperature. Increasing the initial amount of AM will enhance the instability of the microgels at high pH values. Moreover, the P(NIPAM-co-AM-co-TMSPMA) microgels obtained from the linear terpolymer had more homogeneous microstructures as compared with the corresponding NIPAM/AM/TMSPMA microgels prepared by one step emulsion copolymerization as revealed by light scattering measurements.  相似文献   

9.
A new series of copolymers of poly(m-toluidine-co-m-aminoacetophenone) were synthesized by the chemical oxidative method in acid medium. The copolymers were characterized by UV–Vis and FTIR spectroscopy. X-ray diffraction analysis revealed the partial crystalline nature of copolymer. The morphological study by SEM analysis indicated that the surface of the copolymer had the granular structure of agglomerated morphology with average particle size of 200 nm. The conductivity of the copolymers ranged from 2 × 10–4 to 3.3 × 10–8 S/cm and the conductivity decreased with the increase of comonomer concentration. The resultant copolymers showed an enhanced solubility and an improved processability when compared with pure polyaniline.  相似文献   

10.
石山 《高分子科学》2011,29(5):634-638
Micron-sized nonspherical polymer particles having different morphologies were synthesized by seeded soap-free emulsion polymerization of styrene(St) and ethyleneglycol dimethacrylate(EGDMA,used as a crosslinker) on spherical, linear polystyrene(PS) seed particles.The morphology of the resulting PS/poly(St-co-EGDMA) particles was dependent on the crosslinker concentration and polymerization temperature.  相似文献   

11.
Swelling behaviour of poly(N-vinylcaprolactam) (PVC) and poly(N-vinylcaprolactam-co-itaconic acid) (P(VC-co-IA)) gels was investigated in different solvents (water, ethanol, methanol, isopropyl alcohol (IPA), chloroform, toluene, acetone) and in binary solvent mixtures (ethanol/chloroform, ethanol/methanol, IPA/chloroform, ethanol/water, IPA/water). Gels were synthesised in ethanol by the free radical cross-linking polymerisation method at 60°C for 24 h in the presence of azo-bis(isobutyronitrile) and allyl methacrylate as the initiator and cross-linker, respectively. And also, ethanol/distilled water mixture (?r = 4:1) was used as the synthesis medium to determine its effect on the swelling of gels. It was found that the presence of water in the synthesis medium significantly affected the equilibrium swelling value (ESV) and the swelling tendency of gels both in solvents and in solvent mixtures. All gels synthesised in ethanol showed the highest swelling in chloroform. The gels synthesised in the ethanol/water mixture displayed different swelling behaviour. In this case, while chloroform was still valid for maximum swelling of PVC, P(VC-co-IA) had the highest swelling in methanol. Solubility parameters of gels were predicted by the van Krevelen-Hoftyzer (VKH) and Hoy methods (group contribution methods) and theoretical calculations verified the experimental swelling order.  相似文献   

12.
The ring opening polymerization of ε-caprolactone (CL) was initiated by glycol and yttrium tri(2,6-di-tert-butyl-4-methylphenolate)s (Y(OAr)3), preparing dihydroxy-capped poly (ε-caprolactone) (PCL) with controllable molecular weight. 1H NMR and SEC analyses indicate that two kinds of active species and corresponding PCL with different structures exist in the system. Increasing the ratio of glycol to Y(OAr)3 benefits the formation of monofunctional active species. However, poly(ethylene glycol) (PEG)/Y(OAr)3 system only contains sole bifunctional active species to synthesize copolymer of CL with PEG (poly(CL-b-PEG-b-CL)). Dihydroxycapped PCL as macroinitiator can further initiate the polymerization of 2,2-dimethyltrimethylene carbonate (DTC). Thus, triblock copolymer of CL with DTC (poly(DTC-b-CL-b-DTC)) has been prepared.  相似文献   

13.
This paper reports the thermal characterization of polyacrylamide-co-methylcellulose hydrogels and the constituent monomers (acrylamide and methylcellulose). Polymeric materials can be used to produce hydrogels, which can be natural, synthetic, or a mixture. The hydrogels described here were obtained by free radical polymerization, in the presence of N,N′-methylene-bis-acrylamide as a cross-linker agent. Four acrylamide concentrations were used for the synthesis of hydrogels: 3.6, 7.2, 14.7, and 21.7% (w/v). The materials so obtained were analyzed by TG, DTG, DSC, and FT-IR. The TG curves of acrylamide and methylcellulose showed three mass loss events. In DSC curves, the acrylamide exhibited one melting peak at 84.5 °C, and methylcellulose indicated one exothermic event. Nevertheless, acrylamide was considered more stable than methylcellulose. The TG curves of the hydrogels exhibited three mass loss events, and on the DSC curves, three endothermic events were observed. It was verified that the different acrylamide proportions influenced the thermic behavior of hydrogels, and that the authors considered the 7.2% hydrogel a promising drug carrier system. The absorption bands were well defined, confirming the presence of the functional groups in the samples.  相似文献   

14.
Copolymers of benzidine and o-phenylenediamine/kaolinite clay composites with different percentages of kaolinite clay particles were synthesized via in situ oxidative copolymerization. The spectral characteristics upon incorporation of o-phenylenediamine units into the polybenzidine backbone in presence of kaolinite clay were investigated by means of UV–Vis and FTIR spectroscopy. The copolymer in the absence and in the presence of kaolinite clay was studied by thermal gravimetric analysis under non-oxidative conditions. The morphology of the copolymer kaolinite composites system was investigated by the scanning electron microscopy.  相似文献   

15.
Compatibilization of the partially miscible poly(vinylidene fluoride) (PVDF)/poly(styrene-co-acrylonitrile) (SAN) pair by a third homopolymer, i.e., poly(methyl methacrylate) (PMMA), was investigated in relation to cross section morphology, crystallization behaviors and hydrophilicity of the polyblends. Scanning electron microscopy showed a more regular and homogeneous morphology when more than 15 wt.% PMMA was incorporated. The samples presented only α phase regardless of PMMA content in the blend. As the PMMA content increased in the blends, the interactions between each component were enhanced, and the crystallization of PVDF was limited, leading to a decreasing of the crystallinity and the crystallite thickness. Besides, the hydrophilicity of PVDF was further improved by PMMA addition. The sample containing 15 wt.% PMMA showed a more hydrophilic property due to the more polar part of surface tension induced by PMMA addition. Observed from the cross section of the blends, the miscibility of partially miscible PVDF/SAN blends were efficiently improved by PMMA incorporation.  相似文献   

16.
The multiple melting behavior of isothermally melt-crystallized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) from its melt was investigated using differential scanning calorimetry (DSC). PHBHHx exhibits a fourfold endothermic melting phenomenon, which were expressed as A, I, II, and III from low to high temperature, and attributed to the melting of secondary lamellae formed at room temperature, the melting of secondary lamellae at crystallization temperature, the melting of primary lamellae, and the melting of the recrystallized lamellae of different stabilities, respectively. Secondary crystallization is much slower than the primary crystallization and needs a relatively long period of time to occur. Furthermore, secondary crystallization at room temperature is heterogeneous, which depends on the presence of the primary lamellae and the secondary lamellae formation.  相似文献   

17.
New two-component composite polymer films are prepared and studied in terms of thermal stability and stress-strain properties. The matrix component of the composite is polyimide based on 3,3′,4,4′-(1,3-diphenoxybenzene)tetracarboxylic dianhydride and 4,4′-bis(4″-aminophenoxy)diphenyl sulfone. Another component is polyaniline or the copolymer poly(aniline-co-2-aminobenzoic acid). Composite films are cast from mixed solutions of individual polymers in N-methyl-2-pyrrolidone. Interpolymer interactions in polyimide composites with polyaniline or the copolymer of aniline and 2-aminobenzoic acid are investigated via viscometry and IR spectroscopy. The thermal treatment of composite films with poly(aniline-co-2-aminobenzoic acid) results in decarboxylation of the copolymer and formation of polyimide-polyaniline composite films. The morphology, microphase structure, and porosity of the composite films are different from those of the films cast from solutions of polyimide-polyaniline mixtures.  相似文献   

18.
19.
Cellulose diacetate-graft-poly(L-lactide) (CDA-g-PLLA) and poly(vinyl acetate-co-vinyl alcohol)-graft-PLLA (P(VAc-co-VOH)-g-PLLA) were synthesized over a range of compositions, by ring-opening copolymerization of L-lactide at the original hydroxyl positions of the respective trunk polymers, CDA (acetyl DS = 2.15) and P(VAc-co-VOH)-g-PLLA (VAc = 64.2 mol%). All the products of both graft copolymer series were non-crystallizable and their solution-cast films showed no domain segregation of the two components that constituted the trunk and side-chains. A comparative study on the molecular orientation and optical anisotropy induced by uniaxial stretching of film samples was undertaken for the two copolymer series with various side-chain lengths. Overall behaviour of the orientation was estimated from the statistical second (<cos2 ω>) and fourth (<cos4 ω>) moments obtained by a fluorescence polarization method using a rod-like probe of ~2.5 nm. Upon stretching, any film of both series imparted a positive orientation function, i.e., f = (3 <cos2 ω> − 1)/2 > 0, which increased with the extent of deformation. The degree of molecular orientation was higher in the CDA-graft series with a semi-rigid trunk, and, in both series, it declined monotonically with increasing content of the PLLA side-chain. With regard to the optical anisotropy, CDA-g-PLLA films always exhibited a positive birefringence (Δn > 0) upon stretching, while drawn films of P(VAc-co-VOH)-g-PLLA displayed a negative one. This contrast in polarity reflects a difference in the intrinsic birefringence between the two trunk polymers. Of interest was the finding of a discontinuous change in Δn value with copolymer composition (PLLA content) for the respective graft series, when compared at a given stage of elongation of the films. Discussion took into consideration the locally different orientation manners of the attached PLLA chain segments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号