首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel and simple two-step micro-extraction technique combining surfactant-assisted dispersive liquid–liquid micro-extraction and magnetic solid-phase extraction prior to high-performance liquid chromatography was established for analysis of polyphenols including chlorogenic acid, caffeic acid, and scopoletin in tobacco samples. In the developed system, Fe3O4 nanoparticles were synthesized by a one-step chemical co-precipitation method and used to remove hydrophobic substances in tobacco samples by physical adsorption. Low-density solvent (1-heptanol) and cationic surfactant cethyltrimethyl ammonium bromide were employed as extraction solvent and disperser agent, respectively. Under the optimized experimental conditions, a good linearity of the method was obtained over the concentration range from 0.1 to 1000 ng mL?1 for target analytes. The limits of detection (S/N?=?3) were 0.05 ng mL?1 for CGA, 0.10 ng mL?1 for CFA, and 0.12 ng mL?1 for SP, respectively. Finally, the applicability of the developed method was evaluated by extraction and determination of these three phenolic compounds in tobacco samples and satisfactory average recoveries of spiked samples were between 96.6 and 102.7%.  相似文献   

2.
3.
In this work, we propose solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME) as a simple, rapid and efficient sample pretreatment technique for the extraction and preconcentration of organochlorine pesticides (OCPs) from environmental water samples. Separation and analysis of fifteen OCPs was carried out by gas chromatography–mass spectrometry (GC/MS). Parameters affecting the extraction efficiency were systematically investigated. The detection limits were in the range of 2–50 ng L−1 using selective ion monitoring (SIM). The precision of the proposed method, expressed as relative standard deviation, varied between 3.5 and 10.2% (n = 5). Results from the analysis of spiked environmental water samples at the low-ppb level met the acceptance criteria set by the EPA.  相似文献   

4.
A simple and fast method of low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction (ST-DLLME) was developed for the highly sensitive determination of carbamate pesticides in the water samples by gas chromatography-tandem mass spectrometry (GC-MSMS). After dispersing, the obtained emulsion cleared into two phases quickly when an aliquot of acetonitrile was introduced as a chemical demulsifier into the aqueous bulk. Therefore, the developed procedure does not need centrifugation to achieve phase separation. It was convenient for the usage of low-density extraction solvents in DLLME. Under the optimized conditions, the limits of detection for all target carbamate pesticides were in range of 0.001–0.50 ng mL−1 and the precisions were in the range of 2.3–6.8% (RSDs, 2 ng mL−1, n = 5). The proposed method has been successfully applied to the analysis of real water samples and good spiked recoveries over the range of 94.5–104% were obtained.  相似文献   

5.
An ultra-preconcentration technique composed of solid-phase extraction (SPE) and dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–flame photometric detection (GC–FPD) was used for determination of thirteen organophosphorus pesticides (OPPs) including phorate, diazinon, disolfotane, methyl parathion, sumithion, chlorpyrifos, malathion, fenthion, profenphose, ethion, phosalone, azinphose-methyl and co-ral in aqueous samples. The analytes were collected from large volumes of aqueous solutions (100 mL) into 100 mg of a SPE C18 sorbent. The effective variables of SPE including type and volume of elution solvent, volume and flow rate of sample solution, and salt concentration were investigated and optimized. Acetone was selected as eluent in SPE and disperser solvent in DLLME and chlorobenzene was used as extraction solvent. Under the optimal conditions, the enrichment factors were between 15,160 and 21,000 and extraction recoveries were 75.8–105.0%. The linear range was 1–10,000 ng L?1 and limits of detection (LODs) were between 0.2 and 1.5 ng L?1. The relative standard deviations (RSDs) for 50 ng L?1 of OPPs in water with and without an internal standard, were in the range of 1.4–7.9% (n = 5) and 4.0–11.6%, respectively. The relative recoveries of OPPs from well and farm water sat spiking levels of 25 and 250 ng L?1 were 88–109%.  相似文献   

6.
A solid-phase extraction (SPE) using multi-walled carbon nanotubes (MWCNTs) as adsorbent coupled with gas chromatography–mass spectrometry (GC–MS) method was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Several condition parameters, such as extraction adsorbents, elution solvents and volumes, and sample loading flow rate and volume were optimized to obtain high SPE recoveries and extraction efficiency. 150 mg MWCNTs as sorbent presented high extraction efficiency of 16 PAHs due to the large specific surface area and high adsorption capacity of MWCNTs compared with the commercial C18 column (250 mg/2 mL). The calibration curves of 16 PAHs extracted were linear in the range of 20–5000 ng L−1, with the correlation coefficients (r2) between 0.9848 and 0.9991. The method attained good precisions (relative standard deviation, RSD) from 1.2% to 12.1% for standard PAHs aqueous solutions; method recoveries ranged in 76.0–125.5%, 74.5–127.0%, and 70.0–122.0% for real spiked samples from river water, tap water and seawater, respectively. Limits of detection (LODs, S/N = 3) of the method were determined from 2.0 to 8.5 ng L−1. The optimized method was successfully applied to the determination of 16 PAHs in real environmental water samples.  相似文献   

7.
Solid-phase extraction (SPE) was combined with headspace solid-phase microextraction (HS-SPME) for the highly effective enrichment of 17 ultra trace organochlorine pesticides in water samples. The target compounds were successfully transferred from water samples to a gas chromatography capillary column by means of four consecutive steps, namely SPE, solvent conversion, HS-SPME, and thermal desorption of the SPME fiber. Parameters, including elution volume and breakthrough volume in the SPE step, temperature in the solvent conversion step, and fiber type, ionic strength, extraction temperature, extraction time, and pH in the SPME step were optimized to improve the performance of the method through either single factor comparative experiment or the orthogonal experimental design approach. After optimization, the method gave high sensitivity with a method detection limit ranging from 0.0018 to 0.027 ng L−1, good repeatability with a relative standard deviation less than 20% (n = 4) and acceptable recovery with a value mostly exceeding 60%. External standard calibration was employed for the quantification, and a wide linear range (from 0.0010 to 60 ng mL−1) with R2 values ranging from 0.9988 to 0.9999 were observed. In the end, the method was successfully applied to the Arctic samples, and the results showed that, among all the organochlorine pesticides, hexachlorocyclohexanes (HCHs) were the most predominant in the Arctic surface water body with sum of their concentrations ranging from 0.262 to 3.156 ng L−1.  相似文献   

8.
A flow injection solid-phase extraction preconcentration system using a multi-walled carbon nanotubes (MWCNTs) packed micro-column was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water by gas chromatography–mass spectrometry (GC–MS). The preconcentration of PAHs on the MWCNTs was carried out based on the adsorption retention of analytes by on-line introducing the sample into the micro-column system. Methanol was introduced to elute the retained analytes for GC–MS analysis using selected ion monitoring (SIM) mode. Important influence factors were studied in detail, such as sample acidity, sample flow rate, eluent flow rate and volume, dimensions of MWCNTs and amounts of packing material. Limits of detection of 16 PAHs for an extraction of 50 mL water sample were in the range of 0.001–0.15 μg L−1, and the precisions (RSD) were in the range of 4–14%. The optimized method was successfully applied to the determination of 16 PAHs in surface waters, with recoveries in the range of 72–93% for real spiked sample.  相似文献   

9.
The nano-LC technique is increasingly used for both fast studies on enantiomeric analysis and test beds of novel stationary phases due to the small volumes involved and the short conditioning and analysis times. In this study, the enantioseparation of 10 drugs from different families was carried out by nano-LC, utilizing silica with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column. The effect on chiral separation caused by the addition of different salts to the mobile phase was evaluated. To simultaneously separate as many enantiomers as possible, the effect of buffer concentration in the mobile phase was studied, and, to increase the sensitivity, a liquid–liquid microextraction based on the use of isoamyl acetate as sustainable extraction solvent was applied to pre-concentrate four chiral drugs from tap and environmental waters, achieving satisfactory recoveries (>70%).  相似文献   

10.
A fast multi-residue method based on dispersive solid-phase extraction (DSPE) followed by liquid chromatography–tandem mass spectrometry was developed for the simultaneous determination of 44 pesticides in raw bovine milk. Raw bovine milk samples did not percolate through SPE cartridges usually applied for pesticide extraction from homogenized pasteurized milk samples. Therefore, a DSPE technique was implemented and validated for the first time in this work. Graphitized non-porous carbon and C18 modified silica materials were tested both in combination with magnesium sulfate and bonded silica with ethylenediamine-N-propyl phase. The efficiency of the DSPE process was studied at several concentration levels obtaining the higher recoveries with C18 material. The method performance was also assessed and the limits of quantification reached the ng g−1 level, complying with the most recent maximum residue levels. The DSPE method was also shown to be suited to both the fatty and skimmed fractions issued from raw milk. Finally, the extraction method was successfully applied to the analysis of raw milk samples collected in 23 farms of dairy cattle from NW Spain (Galicia).  相似文献   

11.
The distribution of pyrethroid and phenylpyrazole pesticides in the water environment has raised public concerns because of their potential risks to ecosystem and human health. However, co-extraction of emulsifier type compounds (by liquid–liquid extraction, LLE) present in environmental samples can present a challenge for quantifying typically low concentrations of pesticides. Several methods were evaluated for breaking emulsions in problematic environmental surface water samples extracted by LLE using methylene chloride. Target pesticides included 11 typical pyrethroid and phenylpyrazole pesticides commonly used in agricultural and landscape insect pest control. The most effective method was selected for validation in fortification studies with GC-ECD analysis. The average recoveries of spiked pyrethroid and phenylpyrazole pesticides were 88.2–123.4% for water samples with moderate emulsions and 93.0–117.4% for water samples with severe emulsions. Recoveries of the pesticides ranged 81.0–126.4% (water samples with moderate emulsions) and 95.9–110.6% (water samples with severe emulsions) for lowest fortification level (5–20 ng L−1), 88.2–123.4% (water samples with moderate emulsions) and 93.0–117.4% (water samples with severe emulsions) for middle fortification level (10–40 ng L−1), and 90.2–119.9% (water samples with moderate emulsions) and 91.2–105.9% (water samples with severe emulsions) for highest fortification level (50–200 ng L−1). Relative standard deviations of pesticide recoveries were usually <10%. Results indicate that this method is a robust and reproducible option for LLE of pyrethroid and phenylpyrazole pesticides from emulsion-prone surface water samples.  相似文献   

12.
A solid-phase extraction coupled with dispersive liquid–liquid microextraction (DLLME) method followed by graphite furnace atomic absorption spectrometry (GFAAS) was developed for the extraction, preconcentration, and determination of ultra trace amounts of lead in water samples. Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100 mL of lead solution were first concentrated using a solid phase sorbent. The extracts were collected in 1.50 mL of THF and 18 μL of carbon tetrachloride was dissolved in the collecting solvent. Then 5.0 mL pure water was injected rapidly into the mixture of THF and carbon tetrachloride for DLLME, followed by GFAAS determination of lead. The analytical figures of merit of method developed were determined. With an enrichment factor of 1,800, a linear calibration of 3–60 ng L?1 and a limit of detection of 1.0 ng L?1 were obtained. The relative standard deviation for seven replicate measurements of 30 ng L?1 of lead was 5.2 %. The relative recoveries of lead in mineral, tap, well, and river water samples at spiking level of 10 and 20 ng L?1 are in the range 94–106 %.  相似文献   

13.
14.
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in watermelon and tomato samples was developed by dispersive liquid–liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detection (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimised to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 10 to 1000?ng?g?1 for all the five carbamate pesticides, with the correlation coefficients (r) varying from 0.9982 to 0.9992. Good enrichment factors were achieved ranging between 80 and 177, depending on the compound. The limits of detection (LODs) (S/N?=?3) were ranged from 0.5 to 1.5?ng?g?1. The method has been successfully applied to the analysis of the pesticide residues in watermelon and tomato samples. The recoveries of the method fell in the range between 76.2% to 94.5% with RSDs less than 9.6%, indicating the feasibility of the DLLME method for the determination of the five carbamate pesticides in watermelon and tomato samples.  相似文献   

15.
A new micro-extraction technique named low-density magnetofluid dispersive liquid–liquid microextraction (LMF-DMMLE) has been developed, which permits a wider range of solvents and can be combined with various detection methods. Comparing with the existing low density solvents micro-extraction methods, no special devices and complicated operations were required during the whole extraction process. Dispersion of the low-density magnetofluid into the aqueous sample is achieved by using vortex mixing, so disperser solvent was unnecessary. The extraction solvent was collected conveniently with an external magnetic field placed outside the extraction container after dispersing. Then, the magnetic nanoparticles were easily removed by adding precipitation reagent under the magnetic field. In order to evaluate the validity of this method, ten organochlorine pesticides (OCPs) were chosen as the analytes. Parameters influencing the extraction efficiency such as extraction solvents, volume of extraction solvents, extraction time, and ionic strength were investigated and optimized. Under the optimized conditions, this method showed high extraction efficiency with low limits of detection of 1.8–8.4 ng L−1, good linearity in the range of 0.05–10.00 μg L−1 and the precisions were in the range of 1.3–9.6% (RSD, n = 5). Finally, this method was successfully applied in the determination of OCPs in real water samples.  相似文献   

16.
A procedure for the determination of three phosphoric acid diesters, eight triesters and triphenylphosphine oxide (TPPO) in water samples is presented. Analytes were simultaneously concentrated using a mixed-mode (reversed-phase and anionic-exchange) solid-phase extraction (SPE) sorbent and then sequentially eluted with methanol (triesters and TPPO) followed by a 20 mM tetrabutylammonium hydrogen sulphate (TBAHS) methanolic solution, case of diesters. After that, they were determined, in two different runs, by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS), operating the ESI source in the positive (triesters and TPPO) and negative (diesters) ionization modes. The efficiency of the extraction step varied between 70 and 105%, except in the case of tris(2-ethylhexyl) phosphate (TEHP), and it was barely affected by the type of water sample. Moreover, low signal suppression effects were noticed in the ESI ionization of extracts obtained from different environmental water samples. As a result, the standard addition methodology was only required for the accurate quantification of tri-substituted organophosphorus (OPs) species in wastewater samples. Limits of quantification of the optimized method ranged from 0.2 to 10 ng L−1, depending on the sample matrix and the considered compound. The analysis of river and wastewater samples confirmed the occurrence of several tri- and di-substituted OPs in the aquatic environment, with the highest concentrations corresponding to tris(butoxyethyl) phosphate (TBEP) and tris(chloropropyl) phosphate (TCPP).  相似文献   

17.
Dispersive liquid–liquid microextraction with little solvent consumption (DLLME-LSC), a novel dispersive liquid–liquid microextraction (DLLME) technique with few solvent requirements (13 μL of a binary mixture of disperser solvent and extraction solvent in the ratio of 6:4) and short extraction time (90 s), has been developed for extraction of organochlorine pesticides (OCPs) from water samples prior to gas chromatography/mass spectrometry analysis. In DLLME-LSC, much less volume of organic solvent is used as compared to DLLME. The new technique is less harmful to environment and yields a higher enrichment factor (1885–2648-fold in this study). Fine organic droplets were formed in the sample solution by manually shaking the test tube containing the mixture of sample solution and extraction solvent. The large surface area of the organic solvent droplets increases the rate of mass transfer from the water sample to the extractant and produces efficient extraction in a short period of time. DLLME-LSC shows good repeatability (RSD: 4.1–9.7% for reservoir water; 5.6–8.9% for river water) and high sensitivity (limits of detection: 0.8–2.5 ng/L for reservoir water; 0.4–1.3 ng/L for river water). The method can be used on various water samples (river water, tap water, sea water and reservoir water). It can be used for routine work for the investigation of OCPs.  相似文献   

18.
19.
An in-situ formed polymer–based dispersive solid phase extraction in combination with solidification of floating organic droplet-based dispersive liquid–liquid microextraction was developed for the extraction of neonicotinoid pesticides from milk samples. The extracted analytes were determined using high-performance liquid chromatography–diode array detector. In this approach, after precipitating the proteins of milk using a zinc sulfate solution, the supernatant phase (containing sodium chloride) was transferred into another glass test tube, and a homogenous solution of polyvinylpyrrolidone and a suitable water-miscible organic solvent was rapidly injected into it. By this step, the polymer particles were re-produced and the analytes were extracted onto the sorbent surface. In the following step, the analytes were eluted with an appropriate organic solvent to use in the following solidification of floating organic droplet-based dispersive liquid–liquid microextraction step that was done to acquire the low limits of detection. Under the optimized conditions, satisfactory results consisting of low limits of detection (0.13–0.21 ng/ml) and quantification (0.43–0.70 ng/ml), high extraction recoveries (73%–85%), and enrichment factors (365–425), and good repeatability (relative standard deviations equal or less than 5.1% and 5.9% for intra- and inter-day precisions, respectively) were obtained.  相似文献   

20.
In recent years, bamboo charcoal, a new kind of material with special microporous and biological characteristics, has attracted great attention in many application fields. In this paper, the potential of bamboo charcoal to act as a solid-phase extraction (SPE) adsorbent for the enrichment of the environmental pollutant perfluorooctanoic acid, which is one of the newest types of persistent organic pollutants in the environment, has been investigated. Important factors that may influence the enrichment efficiency—such as the eluent and its volume, the flow rate of the sample, the pH of the sample and the sample volume—were investigated and optimized in detail. Under the optimum conditions, the limit of detection for PFOA was 0.2 ng L−1. The experimental results indicated that this approach gives good linearity (R 2 = 0.9995) over the range 1–1000 ng L−1 and good reproducibility, with a relative standard deviation of 4.0% (n = 5). The proposed method has been applied to the analysis of real water samples, and satisfactory results were obtained. The average spiked recoveries were in the range 79.5∼118.3 %. All of the results indicate that the proposed method could be used for the determination of PFOA at ultratrace levels in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号