首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics studies of the OH-initiated oxidation of 2-butyne, propyne, and acetylene were conducted at 100 Torr and 298 K using turbulent flow chemical ionization mass spectrometry. The major oxidation products were identified, and with the aid of supporting electronic structure thermodynamics calculations, a general OH-initiated oxidation mechanism for the alkynes is proposed. The major product branching ratio and the product-forming rate constants for the 2-butyne-OH adduct + O(2) reaction were experimentally determined as well. The atmospheric implications of the chemical oxidation mechanism and kinetics results are discussed.  相似文献   

2.
The kinetics of oxidation of nitrite to nitrate by peroxomonophosphoric acid in aqueous acid medium have been studied. The observed monotonic fall in rate with increasing pH of the medium has been rationalized on the basis of proton-dissociation equilibria of the substrate as well as the oxidant species. It is found that only HNO2 reacts with the different PMPA species.  相似文献   

3.
Oxidation is commonly involved in the alteration of nucleic acids giving rise to diverse effects including mutation, cell death, malignancy, and aging. We demonstrate that electrochemistry represents an efficient and fast method to mimic oxidative modification of nucleic acids occurring in biological systems. Oxidation reactions were performed in a thin-layer cell employing a conductive diamond electrode as the working electrode and were monitored with electrospray ionization–mass spectrometry. Mass voltammograms were acquired for guanosine, adenosine, cytidine, and uridine. The observed oxidation potentials increased in the order guanosine<<adenosine<cytidine<uridine. Oxidation products of guanosine were characterized using high-resolution (tandem) mass spectrometry performed with a quadrupole–quadrupole time-of-flight instrument. On the basis of these experiments, it was concluded that the initial electrode reaction involves a one-electron, one-proton step to give a free radical. The primary oxidation product represents the starting point for a number of follow-up reactions, including guanosine dimerization as well as further oxidation to 8-hydroxyguanosine. Similar results were obtained for guanosine monophosphate and the corresponding dinucleotide. Furthermore, the guanosine radical was identified as an important intermediate for the formation of a covalent adduct with acetaminophen. This observation sheds new light on the mechanism of adduct formation as it demonstrates that oxidative activation of both the nucleobase and the adduct-forming agent is necessary to observe a detectable amount of adduct species.  相似文献   

4.
The OH-initiated oxidation of acetone in aqueous solution is investigated because of its potential implications in atmospheric chemistry. The UV-spectrum of the transient acetonylperoxy radical was measured. Two characteristic absorption bands of the acetonylperoxy radical spectrum are found in the 220-400 nm wavelength region. The rate constant for the recombination reaction of the acetonylperoxy radical was determined as a function of temperature for the first time in aqueous solution with k(rec,298?K) = (7.3 ± 1.3) × 10(8) M(-1) s(-1), E(A) = 4.5 ± 3.3 kJ mol(-1), and A = (4.7 ± 2.7) × 10(9) M(-1) s(-1). Furthermore, kinetic investigations of the OH-initiated oxidation of methylglyoxal and pyruvic acid were performed with the following results: for methylglyoxal, k(second) = (6.2 ± 0.2) × 10(8) M(-1) s(-1), E(A) = 12 ± 2 kJ mol(-1), and A = (7.8 ± 0.2) × 10(9) M(-1) s(-1); for pyruvic acid (pH = 0), k(second) = (3.2 ± 0.6) × 10(8) M(-1) s(-1), E(A) = 15 ± 5 kJ mol(-1), and A?= (1.1 ± 0.1) × 10(11) M(-1) s(-1); for pyruvate (pH = 6), k(second) = (7.1 ± 2.4) × 10(8) M(-1) s(-1), E(A) = 25 ± 19 kJ mol(-1), and A = (1.5 ± 0.4) × 10(13) M(-1) s(-1). Quantitative product studies were done as a function of the number of laser photolysis pulses for acetone and its oxidation products methylglyoxal, hydroxyacetone, pyruvic acid, acetic acid, and oxalic acid. After the recombination reaction of acetonylperoxy radicals, there are two possible decomposition reactions where the primary products methylglyoxal and hydroxyacetone are formed. From product analysis after a single photolysis laser shot, the ratio of the main product-forming reactions was determined as (A) 30% and (B) 56% for the methylglyoxal formation via channel A to yield two molecules of methylglyoxal and channel B to yield one molecule of methylglyoxal and one molecule of hydroxyacetone. The remaining product can be ascribed to channel C, the radical-retaining channel forming alkoxy radicals with a yield of 14%. Pyruvic acid and acetic acid were found to be the major intermediates estimated with concentrations in the same order of magnitude and a similar time profile, indicating that acetic acid is also a possible oxidation product of methylglyoxal.  相似文献   

5.
Modified polyethylene glycol polymers are described in which thiol containing groups have been added via a simple esterification step. The resultant thiol end-capped polyethers retain the antioxidant behaviours of the monomeric thiols, but mitigate essentially completely the undesirable properties of the monomers, including offensive odour, volatility, and insolubility in aqueous solvents. This concept substantially enhances the number of potential practical applications of the thiol containing polymers as compared to the monomeric substances. A class of polyethylene glycols substituted with thiolactic acid or thioglycolic acid is described with potential in the pulp and paper industry, for the inhibition of radical induced oxidative processes including brightness reversion in lignin containing papers. Several techniques are used to elucidate aspects of the mechanism by which such thiols are effective: a novel photoacoustic technique demonstrates the scavenging effects of the thiol end capped polyethylene glycols towards alkoxy radicals. ESR studies demonstrate the ability of these thiol polymers to quench both the exogenous “phenoxy” radicals present in CTMP and TMP papers as well as the enhanced radical signal resulting from irradiation of these papers. The strong uv absorbance of these relatively persistent phenoxy radicals may decrease the optimal initial brightness of papers made from mechanical pulps.  相似文献   

6.
Oxidation of sulfanilic acid to the corresponding azoxy derivative by peroxomonophosphoric acid (PMPA) has been studied in aqueous medium. The observed bell-shaped pH-rate profile has been rationalized on the basis of protonation of the amino group and ionization into different PMPA species and a suitable rate law has been proposed. The mechanism of oxidation involves the nucleophilic attack of nitrogen on the electrophilic peroxo oxygen.
- (PMPA) . pH— , PMPA . .
  相似文献   

7.
Ab initio and density functional levels of electronic structure theory are applied to characterize alternative mechanisms for the reductive dechlorination of hexachloroethane (HCA) to perchloroethylene (PCE). Aqueous solvation effects are included using the SM5.42R continuum solvation model. After correction for a small systematic error in the electron affinity of the chlorine atom, theoretical predictions are accurate to within 23 mV for four aqueous reduction potentials relevant to HCA. A single pathway that proceeds via two successive single-electron transfer/barrierless chloride elimination steps, is predicted to be the dominant mechanism for reductive dechlorination. An alternative pathway predicted to be accessible involves trichloromethylchlorocarbene as a reactive intermediate. Bimolecular reactions of the carbene with other species at millimolar or higher concentrations are predicted to potentially be competitive with its unimolecular rearrangement to form PCE.  相似文献   

8.
The development of modular combinations of organocatalytic reactions into cascades has been shown to be an effective tool despite the fact that the mechanism of such a complex organocatalytic multistep cascade reaction still remains poorly understood. Here the detailed mechanistic studies of a complex organocatalytic triple cascade reaction for the synthesis of tetra-substituted cyclohexene carbaldehydes are reported. The investigation has been carried out using a triple quadrupole mass spectrometer with electrospray ionization. Important intermediates were detected and characterized through MS/MS studies. A detailed formation pathway is presented based on these characterized intermediates, and supporting the proposed mechanism of the formation of the substituted cyclohexene carbaldehydes.  相似文献   

9.
The experimental and computational mechanistic details of the Pd(OAc)(2)/TEA-catalyzed aerobic alcohol oxidation system are disclosed. Measurement of various kinetic isotope effects and the activation parameters as well as rate law derivation support rate-limiting deprotonation of the palladium-coordinated alcohol. Rate-limiting deprotonation of the alcohol is contrary to the majority of related kinetic studies for Pd-catalyzed aerobic oxidation of alcohols, which propose rate-limiting beta-hydride elimination. This difference in the rate-limiting step is supported by the computational model, which predicts the activation energy for deprotonation is 3 kcal/mol higher than the activation energy for beta-hydride elimination. The computational features of the similar Pd(OAc)(2)/pyridine system were also elucidated. Details of the study illustrate that the use of TEA results in an active catalyst that has only one ligand bound to the Pd, resulting in a significant lowering of the activation energy for beta-hydride elimination and, therefore, a catalyst that is active at room temperature.  相似文献   

10.
Oxidations of indigocarmine (IC) by chloramine-T (CAT) and aqueous chlorine (HOCl) in acidic buffer media, pH 2–6, have been kinetically studied at 30°C using spectrophotometry. The CAT reaction rate shows a first-order dependence on [IC]0 and an inverse fractional order on [p-toluenesulfonamide]. The effect of [CAT] on the rate is strongly pH dependent with a variable order of 1–2 on [CAT]0 in the pH range 6–2. The chlorine reaction rate follows first-order in [IC]0 and [HOCl]0 each in the pH range 6–2. Addition of halide ions and variation of ionic strength of the medium have no influence on the reaction rate. There is a negative effect of dielectric constant of the solvent. The kinetics of the IC oxidation with CAT at pH 6 and of that with HOCl at pHs 2–6 are similar suggesting similarity in their rate determining steps. A two-pathway mechanism for the CAT reaction and a one-pathway mechanism for the HOCl reaction, consistent with the kinetic data, have been proposed. Activation parameters have been calculated using the Arrhenius and Erying plots. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
This account describes the results collected by our group during the last years on some themes of environmental/mechanistic interest. Theoretical quantum-mechanical investigations have been carried out to help clarifying the mechanism of some oxidation reactions, which involve mainly unsaturated but also saturated organics as substrates, and, as reactive oxidants, triplet or singlet dioxygen, hydroxyl, ozone, and nitrogen oxides. Depending on the problem, the calculations are either multi-configurational (as CAS-MCSCF, CAS-PT2, MC-QDPT2), or based on the Density Functional Theory for the heavier systems. Research work has thus been developed along the following lines: hydrocarbon oxidations under atmospheric or combustion conditions; definition of a model for soot particles and their interaction with species as HO, O2, O3, NO, NO2, NO3, etc.; investigation on the reaction mechanism of 1Δg dioxygen with organic unsaturated systems (cycloaddition and ene reactions).  相似文献   

12.
The oxidation of amino acids by chloramine-T (CAT) in HCl medium at 30°C indicates simultaneous catalysis by H+ and Cl ions in the HCl concentration range of 0.04–0.12 M. The reaction is first order with respect to concentrations [CAT], [H+] and [arginine], but zero order with respect to [histidine]. The rate depends also on Cl concentration following 0.7th order. At HCl concentrations >0.12 M, the rate equation is:w=k[CAT] [amino acid]0.6 and is independent of the [Cl]. A suitable mechanism has been suggested.
-T (CAT) HCl (30°C) H+, Cl [HCl]=0,04–0,12M. [CAT], [H+] [] []. [Cl]0,7. [HCl]>0,12M =k · [CAT][]0,6 [Cl]. .
  相似文献   

13.
The kinetics of oxidation of sulfanilic acid (p-aminobenzenesulfonic acid) by hexacyanoferrate(III) in alkaline medium was studied spectrophotometrically. The reaction showed first order kinetics in hexacyanoferrate(III) and alkali concentrations and an order of less than unity in sulfanilic acid concentration (SAA). The rate of reaction increases with increase in alkali concentration. Increasing ionic strength increases the rate but the dielectric constant of the medium has no significant effect on the rate of the reaction. A retarding effect was observed by one of the products i.e. hexacyanoferrate(II) (HCF(II)). A mechanism involving the formation of a complex between sulfanilic acid and hexacyanoferrate(III) has been proposed. The reaction constants involved in the mechanism are evaluated. There is a good agreement between the observed and calculated rate constants under different experimental conditions. Investigations at different temperatures allowed the determination of the activation parameters with respect to the slow step of the proposed mechanism.  相似文献   

14.
In this work, the antioxidant activity of olive phenols is first characterized by their stoichiometries n(tot)(number of radicals trapped per antioxidant molecule) and their rate constants for the first H-atom abstraction k(1) by the stable radical DPPH. It appears that oleuropein, hydroxytyrosol and caffeic acid have the largest k(1) values, whereas dihydrocaffeic acid, an intestinal metabolite of caffeic acid, is the best antioxidant in terms of n(tot). For phenols with a catechol moiety n(tot) is higher than two, implying an antioxidant effect of their primarily formed oxidation products. A HPLC-MS analysis of the main products formed in the AAPH-induced oxidation of olive phenols reveals the presence of dimers and trimers. With hydroxytyrosol and dihydrocaffeic acid, oligomerization can take place with the addition of water molecules.The antioxidant activity of olive phenols is then evaluated by their ability to inhibit the AAPH-induced peroxidation of linoleic acid in SDS micelles. It is shown that olive phenols and quercetin act as retardants rather than chain breakers like alpha-tocopherol. From a detailed mechanistic investigation, it appears that the inhibition of lipid peroxidation by olive phenols can be satisfactorily interpreted by assuming that they essentially reduce the AAPH-derived initiating radicals. Overall, olive phenols prove to be efficient scavengers of hydrophilic peroxyl radicals with a long lasting antioxidant effect owing to the residual activity of some of their oxidation products.  相似文献   

15.
Artificial accelerated aging paper methods were used to study the cellulose alteration in paper, involving several mechanisms which may influence the paper elemental constitution. Different kinds of modern paper and papyrus were submitted to several weathering processes; intense ultraviolet and solar lights, humidity, high temperature, oxidization by NO4I, and biodegradation by cellulosomes. In this work, energy dispersive X-ray fluorescence was used to quantify S, Cl, K, Ca, Mn, Fe, Cu, Zn, As, Sr, Ba and Pb and X-ray diffraction spectrometry was used to compare the phase differences in the original paper samples and after each aging treatment.Different elemental compositions were observed in modern papers and in papyrus which allows distinguishing them. With a ternary diagram based on elemental composition, we can perfectly identify each kind of paper sample.The obtained results concerning the used artificial aging processes in paper show that only the oxidization by NO4I and biodegradation by cellulosomes affected the elemental content of paper, for S, Cl, K, Ca and Sr. These results are evidenced in the dendograms performed with the elemental concentrations for treated and untreated samples, respectively.Some differences were obtained in the diffractograms for aging process of some papers, which means that crystal phase changes occurred during the corresponding aging process.  相似文献   

16.
The kinetics of oxidation of arginine, histidine, and threonine by chloramine-T (CAT) have been investigated in alkaline medium at 35°C. The rates are first order in both [CAT] and [amino acid] and inverse fractional order in [OH?] for arginine and histidine. The rate is independent of [OH?] for threonine. Variation of ionic strength and addition of the reaction product, p-toluenesulfonamide, or Cl? ions had no effect on the rate. A decrease of the dielectric constant of the medium by adding methanol decreased the rate with arginine, while the rates increased with histidine and threonine. The solvent isotope effect was studied using D2O. (kobs)/(kobs) was found to be 0.55 and 0.79 for arginine and histidine, respectively. The reactions were studied at different temperatures, and activation parameters have been computed. The oxidation process in alkaline medium, under conditions employed in the present investigations, has been shown to proceed via two paths, one involving the interaction of RNHCl (formed rapidly from RNCl?), with the amino acid in a slow step to form monochloroamino acid, which subsequently interacts with another molecule of RNHCl in a fast step to give the products, p-toluenesulfonamide (RNH2), and the corresponding nitrile of the amino acid (R'CN). The other path involves the interaction of RNCl? with the amino acid in a similar way to give RNH2 and R'CN. Mechanisms proposed and the derived rate laws are consistent with the observed kinetics. The rate constants predicted using the derived rate laws, as [OH?] varies, are in excellent agreement with the observed rate constants, thus justifying these rate laws and hence the proposed mechanistic schemes.  相似文献   

17.
Parahydrogen-induced polarization technique (PHIP), based on the pairwise addition of molecular hydrogen to a substrate, was successfully applied to obtain novel information on the mechanisms of heterogeneous catalytic hydrogenation, hydrodesulfurization, and oligomerization processes. In particular, the PHIP effects were observed upon hydrogenation with parahydrogen catalyzed by the immobilized neutral complexes of rhodium and iridium, which confirms the similarity in the mechanisms of homogeneous and heterogeneous hydrogenation for such systems. In the study of acetylene oligomerization, a significant NMR signal enhancement was revealed for a number of C4 oligomers, with the enhancement levels by far exceeding that observed in hydrogenation of carbon-carbon triple bonds. The mechanistic features of heterogeneous hydrogenation of a number of six-membered cyclic hydrocarbons over supported metal catalysts were investigated, and their hydrogenation scheme based on the pairwise addition of molecular hydrogen was proposed. Furthermore, the PHIP technique revealed that heterogeneous hydrodesulfurization of thiophene mainly proceeds via hydrogenation followed by a C—S bond cleavage. A significant enhancement of sensitivity in combination with characteristic line shapes of NMR signals make the PHIP method a unique and highly informative tool for the investigation of heterogeneous catalytic processes.  相似文献   

18.
The kinetics of oxidation of benzhydrol and its p-substituted derivatives (YBH, where Y=H, Cl, Br, NO2, CH3, and OCH3) by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT), catalyzed by ruthenium(III) chloride, in the presence of hydrochloric acid in 30% (v/v) MeOH medium has been studied at 35°C. The reaction rate shows a first-order dependence on [CAT]O and a fractional-order each on [ YBH]O, [Ru(III)], and [H+]. The reaction also has a negative fractional-order (−0.35) behavior in the reduction product of CAT, p-toluenesulfonamide (PTS). The increase in MeOH content of the solvent medium retards the rate. The variation of ionic strength of the medium has negligible effect on the rate. Rate studies in D2O medium show that the solvent isotope effect, k′H2O/k′D2O, is equal to 0.60. Proton inventory studies have been made in H2O(SINGLEBOND)D2O mixtures. The rates correlate satisfactorily with Hammett σ relationship. The LFE relationship plot is biphasic and the reaction constant ρ=−2.3 for electron donating groups and ρ=−0.32 for electron withdrawing groups at 35°C. Activation parameters ΔH, ΔS, and ΔG have been calculated. The parameters, ΔH and ΔS, are linearly related with an isokinetic temperature β=334 K indicating enthalpy as a controlling factor. A mechanism consistent with the observed kinetics has been proposed. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
A new apparatus based on the rotating ring—disc electrode system is described. The symmetric double-step potential is connected to the ring electrode to oxidize luminol, while the disc electrode is maintained at a negative potential to reduce oxygen to hydrogen peroxide. Because of the electrode rotation, hydrogen peroxide is immediately transported to the ring electrode at which it reacts with luminol oxidation product to emit light. Preliminary electrogenerated chemiluminescence measurements indicate that the intensity of the chemiluminescence of luminol is highly dependent on the ring and disc electrode materials and that some metal ions have a catalytic or inhibitive effect on this luminescence reaction of luminol.  相似文献   

20.
Rice husk was utilized as a silica source for the synthesis of mesoporous silica (MS), which was further used for the surface modification of iron oxide nanoparticles (IO-NPs) to form mesoporous silica-modified iron oxide nanoparticles (MSIO-NPs). IO-NPs and MSIO-NPs were characterized using FT-IR, XRD, X-ray photoelectron spectroscopy, vibrating sample magnetometry, nitrogen adsorption–desorption, TEM and dynamic light scattering analysis. The catalytic activity of MSIO-NPs was tested for degradation and mineralization of Nile blue sulphate dye (NBS) in Fenton-like oxidation process. The degradation efficiency and total organic carbon (TOC) removal of NBS dye onto MSIO-NPs was found to be 92.46 and 66.58%, respectively, after 20 min of reaction time using 5 mM of H2O2 concentration. Modified generalized kinetic model was developed for TOC removal of dye degradation onto MSIO-NPs, to account for oxidizable compounds, non-oxidizable compounds, and intermediate organic compounds. The intermediate products formed during degradation of NBS dye were detected by LC–MS experiment and ten fragments were identified based on mass to charge ratio (m/z). The mechanistic pathway for degradation of NBS dye onto MSIO-NPs has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号