首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The removal of bottlenecks in discovery stage metabolite identification studies is an ongoing challenge for the pharmaceutical industry. We describe the use of an 'All-in-One' approach to metabolite characterization that leverages the fast scanning and high mass accuracy of hybrid quadrupole time-of-flight mass spectrometry (QqToFMS) instruments. Full-scan MS and MS/MS data is acquired using collision energy switching without the preselection, either manually or in a data-dependent manner, of precursor ions. The acquisition of 'clean' MS/MS data is assisted by the use of ultrahigh-performance chromatography. Data acquired using this method can then be mined post-acquisition in a number of ways. These include using narrow window extracted ion chromatograms (nwXICs) for expected biotransformations, XICs for the product ions of the parent compound and/or expected modification of these product ions, and neutral loss chromatograms. This approach has the potential to be truly comprehensive for the determination of in vitro biotransformations in a drug discovery environment.  相似文献   

2.
Electrophilic reactive metabolite screening by liquid chromatography/mass spectrometry (LC/MS) is commonly performed during drug discovery and early-stage drug development. Accurate mass spectrometry has excellent utility in this application, but sophisticated data processing strategies are essential to extract useful information. Herein, a unified approach to glutathione (GSH) trapped reactive metabolite screening with high-resolution LC/TOF MS(E) analysis and drug-conjugate-specific in silico data processing was applied to rapid analysis of test compounds without the need for stable- or radio-isotope-labeled trapping agents. Accurate mass defect filtering (MDF) with a C-heteroatom dealkylation algorithm dynamic with mass range was compared to linear MDF and shown to minimize false positive results. MS(E) data-filtering, time-alignment and data mining post-acquisition enabled detection of 53 GSH conjugates overall formed from 5 drugs. Automated comparison of sample and control data in conjunction with the mass defect filter enabled detection of several conjugates that were not evident with mass defect filtering alone. High- and low-energy MS(E) data were time-aligned to generate in silico product ion spectra which were successfully applied to structural elucidation of detected GSH conjugates. Pseudo neutral loss and precursor ion chromatograms derived post-acquisition demonstrated 50.9% potential coverage, at best, of the detected conjugates by any individual precursor or neutral loss scan type. In contrast with commonly applied neutral loss and precursor-based techniques, the unified method has the advantage of applicability across different classes of GSH conjugates. The unified method was also successfully applied to cyanide trapping analysis and has potential for application to alternate trapping agents.  相似文献   

3.
A new strategy using a hybrid linear ion trap/Orbitrap mass spectrometer and multiple post-acquisition data mining techniques was evaluated and applied to the detection and characterization of in vitro metabolites of indinavir. Accurate-mass, full-scan MS and MS/MS data sets were acquired with a generic data-dependent method and processed with extracted-ion chromatography (EIC), mass-defect filter (MDF), product-ion filter (PIF), and neutral-loss filter (NLF) techniques. The high-resolution EIC process was shown to be highly effective in the detection of common metabolites with predicted molecular weights. The MDF process, which searched for metabolites based on the similarity of mass defects of metabolites to those of indinavir and its core substructures, was able to find uncommon metabolites not detected by the EIC processing. The high-resolution PIF and NLF processes selectively detected metabolites that underwent fragmentation pathways similar to those of indinavir or its known metabolites. As a result, a total of 15 metabolites including two new indinavir metabolites were detected and characterized in a rat liver S9 incubation sample. Overall, these data mining techniques, which employed distinct metabolite search mechanisms, were complementary and effective in detecting both common and uncommon metabolites. In summary, the results demonstrated that this analytical strategy enables the high-throughput acquisition of accurate-mass LC/MS data sets, comprehensive search of a variety of metabolites through the post-acquisition processes, and effective structural characterization based on elemental compositions of metabolite molecules and their product ions.  相似文献   

4.
Today, it is necessary to identify relevant compounds appearing in discovery and development of new drug substances in the pharmaceutical industry. For that purpose, the measurement of accurate molecular mass and empirical formula calculation is very important for structure elucidation in addition to other available analytical methods. In this work, the identification and confirmation of degradation products in a finished dosage form of the antibiotic drug amoxicillin obtained under stress conditions will be demonstrated. Structure elucidation is performed utilizing liquid chromatography (LC) ion trap MS/MS and MS3 together with accurate mass measurement of the molecular ions and of the collision induced dissociation (CID) fragments by liquid chromatography electro spray ionization time-of-flight mass spectrometry (LC/ESI-TOF).  相似文献   

5.
A rapid, specific and reliable isocratic high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed and validated for the identification and characterization of stressed degradation products of metoprolol. Metoprolol, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and hydrolysis (acid and base) stress conditions. However, it was stable to thermal, neutral and photolysis stress conditions. A total of 14 degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on a C(18) column (4.6 × 250 mm, 5 μm). To characterize degradation products, initially the mass spectral fragmentation pathway of the drug was established with the help of MS/MS, MS(n) and accurate mass measurements. Similarly, fragmentation pattern and accurate masses of the degradation products were established by subjecting them to LC-MS/QTOF analysis. Structure elucidation of degradation products was achieved by comparing their fragmentation pattern with that of the drug. The degradation products DP(2) (m/z 153) and DP(14) (m/z 236) were matched with impurity B, listed in European Pharmacopoeia and British Pharmacopoeia, and impurity I, respectively. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision.  相似文献   

6.
An integrated differential approach to the characterization of complex mixtures is presented which includes the targeting of liquid chromatography (LC) peaks for identification using characteristic UV adsorption of the LC peak, subsequent molecular weight and formula determination using accurate mass LC mass spectrometry (MS), and structure characterization using accurate mass LC-tandem mass spectrometry. The use of differential UV adsorption aids in narrowing the scope of the study to only specific peaks of interest. Accurate mass measurement of the molecular ion species provides molecular weight information as well as atomic composition information. The tandem MS (MS/MS) spectra provide fragmentation information which allows for structural characterization of each component. Accurate mass assignment of each of the fragment ions in the MS/MS spectrum provides atomic composition for each of the fragment ions and thus further aids in the structural characterization. These experiments are facilitated through the use of on-line LC-MS and LC-MS/MS with in-line UV detection. A synthetic toxic oil (STO) related to Toxic Oil Syndrome is studied with a focus on possible contaminants resulting from the interaction of aniline, used as a denaturant, with the normal components of the oil. A differential analysis between the STO and a control oil is performed. LC peaks were targeted using UV absorbance to indicate the possible presence of the aniline moiety. Further differential analysis was performed through the determination of the MS signals associated with each component separated on the LC. Finally, the MS/MS data was also used to determine if the fragmentation of the targeted components indicated the presence of aniline. The MS/MS and accurate mass data were used to assign the structures for the targeted components.  相似文献   

7.
In this study, we benefit from the combination of liquid chromatography (LC)/time-of-flight (TOF) MS accurate mass measurements to generate elemental compositions of ions and LC/ion trap multiple MS (MSn) providing complementary structural information, which is useful for the elucidation of unknown organic compounds at trace levels in complex food extracts. We have applied this approach to investigate different citrus fruits extracts, and we have identified two post-harvest fungicides (imazalil and prochloraz), the main degradation product of imazalil ([M + H]+, m/z 257) and a non-previously reported prochloraz degradation product ([M + H]+, m/z 282). The database-mediated identification of the parent compounds was based on the generated elemental composition obtained from accurate mass measurements and additional qualitative information from the high resolution chlorine isotopic clusters of both the protonated molecules (imazalil, [M + H]+ 297.0556, <0.1 ppm error, 2-Cl; prochloraz, [M + H]+ 376.0381, 1.9 ppm error, 3-Cl) and their characteristic fragments ions (imazalil: m/z 255 and 159; prochloraz: m/z 308 and 266). The correlation between the structural information provided by ion trap MS/MS fragmentation pathways of the parent species and the TOF accurate mass elemental composition data of the degradation products were the key to elucidate the structures of the degradation products of both post-harvest fungicides. Finally, where standards were not available (prochloraz), further confirmation was obtained by synthesizing the proposed degradation product by acid hydrolysis of the parent standard and confirmation by LC/TOF-MS.  相似文献   

8.
Acceleration of liquid chromatography/mass spectrometric (LC/MS) analysis for metabolite identification critically relies on effective data processing since the rate of data acquisition is much faster than the rate of data mining. The rapid and accurate identification of metabolite peaks from complex LC/MS data is a key component to speeding up the process. Current approaches routinely use selected ion chromatograms that can suffer severely from matrix effects. This paper describes a new method to automatically extract and filter metabolite-related information from LC/MS data obtained at unit mass resolution in the presence of complex biological matrices. This approach is illustrated by LC/MS analysis of the metabolites of verapamil from a rat microsome incubation spiked with biological matrix (bile). MS data were acquired in profile mode on a unit mass resolution triple-quadrupole instrument, externally calibrated using a unique procedure that corrects for both mass axis and mass spectral peak shape to facilitate metabolite identification with high mass accuracy. Through the double-filtering effects of accurate mass and isotope profile, conventional extracted ion chromatograms corresponding to the parent drug (verapamil at m/z 455), demethylated verapamil (m/z 441), and dealkylated verapamil (m/z 291), that contained substantial false-positive peaks, were simplified into chromatograms that are substantially free from matrix interferences. These filtered chromatograms approach what would have been obtained by using a radioactivity detector to detect radio-labeled metabolites of interest.  相似文献   

9.
Plant allelopathy may be considered an additional means of weed control in modern agriculture, but its means of action are not well understood and knowledge of specific allelochemicals involved in allelopathy is required.Benzoxazinoids are a chemical family with the most active allelopathic compounds in some crops (e.g., wheat, rye or maize). The analysis of these analytes has been based mainly on gas chromatography coupled to mass spectrometry (MS) and liquid chromatography (LC) coupled to ultraviolet detection. To improve the sensitivity and selectivity, new methodologies (e.g., LC coupled to MS and tandem MS) are being developed. Less information is available on the analytical strategies to determine their degradation products in soil samples.This article presents an overview of recent advanced analysis of benzoxazinone derivatives in plant tissues and their degradation products in agricultural soils.  相似文献   

10.
Two liquid chromatography mass spectrometric techniques, i.e. ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-Tof MS) and high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS), were used for quantification, confirmation or identification of six macrolide antibiotic residues and/or their degradation products in eggs, raw milk, and/or honey. Macrolides were extracted from food samples by acetonitrile or phosphate buffer (0.1 M, pH 8.0), and sample extracts were further cleaned up using solid-phase extraction cartridges. UPLC/Q-Tof data were acquired in Tof MS full scan mode that allowed both quantification and confirmation of macrolides, and identification of their degradation products. LC/MS/MS data acquisition was achieved using multiple reaction monitoring (MRM), i.e. two transitions, to provide a high degree of sensitivity and repeatability. Matrix-matched standard calibration curves with the use of roxithromycin as an internal standard were utilized to achieve the best accuracy of the method. Both techniques demonstrated good quantitative performance in terms of accuracy and repeatability. LC/MS/MS had advantages over UPLC/Q-Tof MS in that its limits of detection were lower and repeatability was somewhat better. UPLC/Q-Tof provided ultimate and unequivocal confirmation of positive findings, and allowed degradation product identification based on accurate mass. The combination of the two techniques can be very beneficial or complementary in routine analysis of macrolide antibiotic residues and their degradation products in food matrices to ensure the safety of food supply.  相似文献   

11.
This paper describes a new strategy that utilizes the fast trap mode scan of the hybrid triple quadrupole linear ion trap (QqQ(LIT)) for the identification of drug metabolites. The strategy uses information-dependent acquisition (IDA) where the enhanced mass scan (EMS), the trap mode full scan, was used as the survey scan to trigger multiple dependent enhanced product ion scans (EPI), the trap mode product ion scans. The single data file collected with this approach not only includes full scan data (the survey), but also product ion spectra rich in structural information. By extracting characteristic product ions from the dependent EPI chromatograms, we can provide nearly complete information for in vitro metabolites that otherwise would have to be obtained by multiple precursor ion scan (prec) and constant neutral loss (NL) analysis. This approach effectively overcomes the disadvantages of traditional prec and NL scans, namely the slow quadrupole scan speed, and possible mass shift. Using nefazodone (NEF) as the model compound, we demonstrated the effectiveness of this strategy by identifying 22 phase I metabolites in a single liquid chromatography/tandem mass spectrometry (LC/MS/MS) run. In addition to the metabolites reported previously in the literature, seven new metabolites were identified and their chemical structures are proposed. The oxidative dechlorination biotransformation was also discovered which was not reported in previous literature for NEF. The strategy was further evaluated and worked well for the fast discovery setting when a ballistic gradient elution was used, as well as for a simulated in vivo setting when the incubated sample (phase I metabolites) was spiked to control human plasma extract and control human urine.  相似文献   

12.
Ketorolac, a nonsteroidal anti‐inflammatory drug, was subjected to forced degradation studies as per International Conference on Harmonization guidelines. A simple, rapid, precise, and accurate high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (LC/ESI/Q/TOF/MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of ketorolac. The drug was found to degrade in hydrolytic (acidic, basic, and neutral), photolytic (acidic, basic, and neutral solution), and thermal conditions, whereas the solid form of the drug was found to be stable under photolytic conditions. The method has shown adequate separation of ketorolac tromethamine and its degradation products on a Grace Smart C‐18 (250 mm × 4.6 mm i.d., 5 µm) column using 20 mM ammonium formate (pH = 3.2): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 1.0 ml/min. A total of nine degradation products were identified and characterized by LC/ESI/MS/MS. The most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H]+ ions of ketorolac and its degradation products. In silico toxicity of the drug and degradation products was investigated by using topkat and derek softwares. The method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Benazepril, an anti-hypertensive drug, was subjected to forced degradation studies. The drug was unstable under hydrolytic conditions, yielding benazeprilat, which is a known major degradation product (DP) and an active metabolite. It also underwent photochemical degradation in acid and neutral pH conditions, resulting in multiple minor DPs. The products were separated on a reversed phase (C18) column in a gradient mode, and subjected to LC–MS and LC–NMR studies. Initially, comprehensive mass fragmentation pathway of the drug was established through support of high resolution mass spectrometric (HR-MS) and multi stage tandem mass spectrometric (MSn) data. The DPs were also subjected to LC–MS/TOF studies to obtain their accurate masses. Along with, on-line H/D exchange data were obtained to ascertain the number of exchangeable hydrogens in each molecule. LC–1H NMR and LC–2DNMR data were additionally acquired in a fraction loop mode. The whole information was successfully employed for the characterization of all the DPs. A complete degradation pathway of the drug was also established.  相似文献   

14.
We report herein, facile metabolite identification workflow on the anti-depressant nefazodone, which is derived from accurate mass measurements based on a single run/experimental analysis. A hybrid LTQ/orbitrap mass spectrometer was used to obtain accurate mass full scan MS and MS/MS in a data-dependent fashion to eliminate the reliance on a parent mass list. Initial screening utilized a high mass tolerance ( approximately 10 ppm) to filter the full scan MS data for previously reported nefazodone metabolites. The tight mass tolerance reduces or eliminates background chemical noise, dramatically increasing sensitivity for confirming or eliminating the presence of metabolites as well as isobaric forms. The full scan accurate mass analysis of suspected metabolites can be confirmed or refuted using three primary tools: (1) predictive chemical formula and corresponding mass error analysis, (2) rings-plus-double bonds, and (3) accurate mass product ion spectra of parent and suspected metabolites. Accurate mass characterization of the parent ion structure provided the basis for assessing structural assignment for metabolites. Metabolites were also characterized using parent product ion m/z values to filter all tandem mass spectra for identification of precursor ions yielding similar product ions. Identified metabolite parent masses were subjected to chemical formula calculator based on accurate mass as well as bond saturation. Further analysis of potential nefazodone metabolites was executed using accurate mass product ion spectra. Reported mass measurement errors for all full scan MS and MS/MS spectra was <3 ppm, regardless of relative ion abundance, which enabled the use of predictive software in determining product ion structure. The ability to conduct biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurements, all in a single experimental run, is clearly one of the most attractive features of this methodology.  相似文献   

15.
16.
Quantitative analysis of liquid chromatography (LC)-mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data is essential to many proteomics studies. We have developed MASIC(2) to accurately measure peptide abundances and LC elution times in LC-MS/MS analyses. This software program uses an efficient processing algorithm to quickly generate mass specific selected ion chromatograms from a dataset and provides an interactive browser that allows users to examine individual chromatograms with a variety of options.  相似文献   

17.
The application of ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC/TOFMS) for high-throughput analysis of a 96-well plate based metabolic stability assay has been investigated. Full-scan data were acquired, with run times of 2.5-3.5 min, from which narrow window extracted ion chromatograms were generated, producing quantitative data for the test compound equivalent to that obtained by high-performance liquid chromatography with tandem mass spectrometric detection on a triple quadrupole instrument (HPLC/MS/MS). Sensitivity and mass accuracy were maintained over the analysis of >300 samples. Additionally, the UPLC/TOFMS datasets obtained gave access to metabolic route information, at no cost in terms of sensitivity for the test compound.  相似文献   

18.
This study reports an applicable analytical strategy of comprehensive identification and structure characterization of target components from Gelsemium elegans by using high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (LC‐QqTOF MS) based on the use of accurate mass databases combined with MS/MS spectra. The databases created included accurate masses and elemental compositions of 204 components from Gelsemium and their structural data. The accurate MS and MS/MS spectra were acquired through data‐dependent auto MS/MS mode followed by an extraction of the potential compounds from the LC‐QqTOF MS raw data of the sample. The same was matched using the databases to search for targeted components in the sample. The structures for detected components were tentatively characterized by manually interpreting the accurate MS/MS spectra for the first time. A total of 57 components have been successfully detected and structurally characterized from the crude extracts of G. elegans , but has failed to differentiate some isomers. This analytical strategy is generic and efficient, avoids isolation and purification procedures, enables a comprehensive structure characterization of target components of Gelsemium and would be widely applicable for complicated mixtures that are derived from Gelsemium preparations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Active phloroglucinol constituents of Hypericum perforatum (St. John's wort) extracts, hyperforin and adhyperforin, have been studied following ion activation using tandem mass spectrometry (MS/MS) and complemented by accurate mass measurements. These two compounds were readily analyzed as protonated and deprotonated molecules with electrospray ionization. MS/MS and MS3 data from a quadrupole-linear ion trap tandem mass spectrometer were employed to elucidate fragmentation pathways. Fourier transform ion cyclotron resonance measurements afforded excellent mass accuracies for the confirmation of elemental formulae of product ions formed via infrared multiphoton dissociation and sustained off-resonance irradiation collision-induced dissociation. Fragmentation schemes have been devised for the dissociation of hyperforin and adhyperforin in negative and positive ion modes. This information is expected to be especially valuable for the characterization of related compounds, such as degradation products, metabolites and novel synthetic analogs of hyperforin.  相似文献   

20.
This study describes application of liquid chromatography coupled with triple quadrupole mass spectrometry (LC‐MS) for evaluation of vitamin C stability, the objective being prediction of the degradation products. Detection was performed with an UV detector (UV‐Vis) in sequence with a triple‐quad mass spectrometer in the multiple reaction mode. The negative ion mode of ESI and MS‐MRM transitions of m/z 175→115 (quantifier) and 175→89 (qualifier) for ascorbic acid was used. All the validation parameters were within the range of acceptance proposed by the Food and Drug Administration. The method was fully validated in terms of linearity, LOD, LOQ, accuracy, and interday precision. Validation experiments revealed good linearity with R2 = 0.999 within the established concentration range, and excellent repeatability (9.3%). The LOD of the method was 0.1524 ng/mL whereas the LOQ was 0.4679 ng/mL. LC‐MS methodology proves to be an improved, simple, and fast approach to determining the content of vitamin C and its degradation products with high sensitivity, selectivity, and resolving power within 6 minutes of analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号