首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoelectrocatalytic degradation of various dyes under visible light irradiation with a TiO(2) nanoparticles electrode has been investigated to reveal the mechanism for TiO(2)-assisted photocatalytic degradation of dyes. The degradation of both cationic and anionic dyes at different biases, including the change in the degradation rate of the dyes and the photocurrent change with the bias potential, the degraded intermediates, the voltage-induced adsorption of dyes, the accumulation of electrons in the TiO(2) electrode, the effect of various additives such as benzoquinone (BQ) and N,N-dimethyl aniline (DMA), and the formation of active oxygen species such as O(2)(*-) and H(2)O(2) were examined by UV-visible spectroscopy, HPLC, TOC, and spin-trap ESR spectrometry. It was found that the dyes could controllably interact with the TiO(2) surface by external bias changes and charging of dyes. The cationic dyes such as RhB and MG underwent efficient mineralization at negative bias, but the N-dealkylation process predominated at positive bias under visible light irradiation. The discolorations of the anionic dyes SRB and AR could not be accelerated significantly at either negative or positive bias. At a negative bias of -0.6 V vs SCE, O(2)(*-) and dye(*+) were formed simultaneously at the electrode/electrolyte interface during degradation of cationic RhB. In the case of anionic dyes, however, it is impossible for the O(2)(*-) and dye cationic radical to coexist at the electrode/electrolyte surface. Experimental results imply both the superoxide anionic radical and the dye cationic radical are essential to the mineralization of the dyes under visible light-induced photocatalytic conditions.  相似文献   

2.
Surface-fluorinated TiO2 (F-TiO2) particles were prepared via the HF etching method. The surface characteristics of fluorinated TiO2, the adsorption modes of dyes, and the reaction pathways for the photocatalytic degradation of dye pollutants under visible light irradiation were investigated. It was found that, in the treatment of TiO2 by HF etching, F(-) not only displaces surface HO(-) but also substitutes some surface lattice oxygen. Using zwitterionic Rhodamine B (RhB) dye as a model, the change of the adsorption mode of RhB on F-TiO2 relative to that on pure TiO2 was validated by adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and IR techniques for the first time. RhB preferentially anchors on pure TiO2 through the carboxylic (-COOH) group, while its adsorption group is switched to the cationic moiety (-NEt 2 group) on F-TiO2. Both the photocatalytic degradation kinetics and mechanisms were drastically changed after surface fluorination. Dyes with positively charged nitrogen-alkyl groups such as methylene blue (MB), malachite green (MG), Rhodamine 6G (Rh6G), and RhB all underwent a rapid N-dealkylation process on F-TiO2, while on pure TiO2 direct cleavage of dye chromophore ring structures predominated. The relationship between surface fluorination and the degradation rate/pathway of dyes under visible irradiation was also discussed in terms of the effect of fluorination on the surface adsorption of dyes and on the energy band structure of TiO2.  相似文献   

3.
It has been reported that addition of polyoxometalates (POM) or fluoride anions into the TiO(2) dispersions can significantly enhance the photocatalytic degradation (PCD) of weakly adsorptive organic pollutants in water such as chlorophenol. In this work, however, contradictory effects of POM and fluoride were observed on the PCD of highly adsorptive substrate X3B, an anionic organic dye, under similar conditions. The total rate of X3B PCD, determined by total loss of X3B both in solution and on the catalyst surface, was increased in the presence of fluoride, but the rate was decreased in the presence of POM. In both cases, the dark adsorption of X3B on TiO(2) was greatly decreased, ascribed to competitive adsorption of POM or fluoride that reduces the positive charges on the catalyst surface. The spectral analysis and the kinetic study using tert-butyl alcohol as hydroxyl radical scavenger revealed that the PCD of X3B on naked TiO(2) was predominately initiated by direct hole transfer, whereas addition of POM or fluoride into the TiO(2) dispersions enhanced the degradation of X3B via hydroxyl radical pathway. It is proposed that the surface occupation of POM on TiO(2) accelerates the production of surface-bound hydroxyl radicals, due to enhanced charge separation, whereas the fluoride replacement of surface hydroxyl groups of TiO(2) increases the production of free hydroxyl radicals in solution, due to enhanced hole availability for water oxidation. Assume that the relative reactivity among various active follows the order of free hydroxyl radicals > subsurface holes > surface-bound hydroxyl radicals, the proposal could account for the observed effects of POM and fluoride on the PCD of both weakly and highly adsorptive organic substrates over TiO(2) such as chlorophenol and X3B.  相似文献   

4.
通过溶剂热法制备出空心球状的碘氧化铋,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和物理吸附仪等技术手段对样品的结构和性能进行了表征。选用阳离子型染料罗丹明B和阴离子型染料活性蓝KN-R来研究BiOI的吸附性能和光催化活性。结果表明,在不同的溶液初始pH值下BiOI对不同结构和类型的染料表现出不同的吸附性和光催化降解性。BiOI对罗丹明B和活性蓝KN-R均有较高的吸附性和降解率,且光催化降解效率可以达到96.2%和92.5%。捕捉实验表明,h+在光催化降解中起主要作用。  相似文献   

5.
TiO(2) sensitized by derivatized ruthenium bipyridyl complexes has been intensively investigated as a tool to utilize visible light. This article describes an alternative approach to attaching ruthenium complex sensitizers at the TiO(2)/H(2)O interface, which is a much simpler and more efficient way to produce hydrogen. The surface of TiO(2) particles are simply coated with perfluorosulfonate polymer (cation-exchange resin: Nafion), and then Ru(bpy)(3)(2+) (as a cationic form), whose bipyridyl ligands are not functionalized with carboxylic acid groups, are bound within the Nafion layer through electrostatic attraction. The visible-light-induced production of H(2) on Nf/TiO(2) using simple Ru(bpy)(3)(2+) as a sensitizer is far more efficient than that on Ru(dcbpy)(3)-TiO(2), upon which many sensitized photoelectrochemical conversion systems are based. Effects of various experimental parameters such as pH, concentration of Ru(bpy)(3)(2+), Nafion loading, and the kind of TiO(2) were investigated. Under optimized conditions, the H(2) production rate was about 80 mumol/h, which corresponds to an apparent photonic efficiency of 2.6%. The roles of the Nafion layer on TiO(2) in the sensitized H(2) production are proposed to be twofold: to provide binding sites for cationic sensitizers and to enhance the local activity of protons in the surface region.  相似文献   

6.
通过三醛基间苯三酚(TFP)与2,2′-联苯胺二磺酸(BDSA)的席夫碱反应, 合成了β-酮烯胺连接的磺酸功能化球形共价有机框架(TFP-BDSA COF). 所得阴离子型TFP-BDSA可迅速吸附如亚甲基蓝(MLB)、 结晶紫(CV)和罗丹明B(RhB)等阳离子染料, 而对如甲基橙(MO)和荧光素钠(FS)等阴离子染料则难以吸附, 该COF可实现基于电荷模式的阴离子、 阳离子染料的分离. TFP-BDSA对阳离子染料的吸附动力学均遵循拟二级吸附动力学模型, 吸附过程符合Langmuir吸附模型, 其对MLB, CV和RhB的最大吸附容量分别高达1116, 1429和1638 mg/g. 与其它COFs材料相比, TFP-BDSA对CV和RhB的吸附容量最高. 该工作可为开发功能COFs材料实现对废水中有机污染物的快速吸附和有效去除提供参考.  相似文献   

7.
The present research combines biosorption and photocatalysis in a functional TiO(2)-immobilized chitosan adsorbent (CTA). CTA can degrade organic pollutants and adsorb metal ions simultaneously. Target pollutants were dyes of cationic (rhodamine B, Rh.B) and anionic (methyl orange, MO) nature, with Ni(2+) and Cu(2+) selected as heavy metals. The presence of Ni(2+) or Cu(2+) improved the degradation ability of CTA for MO, but inhibited the degradation of Rh.B, with Cu(2+) exhibiting stronger effects than Ni(2+). There was no significant difference in CTA activity when the metal ions were pre-adsorbed or when they coexisted in the solution with the organic dyes. Protons in the reaction system affected the degradation performance in a similar way for Ni(2+) and Cu(2+) leading to a different effect on the degradation for MO and Rh.B. An X-ray photoelectron spectroscopy analysis of the binding energies of the metal ions on the surface in the presence of the cationic or anionic dyes explained the different behaviors. Since anionic and cationic dyes possess chromogenic groups of different charges, they adversely affect the production of OH? radicals when coexisting with Cu(2+) or Ni(2+).  相似文献   

8.
将杂多酸(SiW12O40^4-)负载到阴离子交换树脂上,得到SiW12O40^4-/Resin(SWR)固相光催化剂,在可见光的照射下,可以有效地活化H2O2降解染料.以罗丹明B(RhodamineB,RhB)为模型化合物,研究了不同条件下RhB的降解动力学,以及降解过程中其UV—vis光谱及体系的总有机碳(Total Organic Carbon,TOC)变化情况,结果表明RhB的共轭芳环结构被破坏,矿化率为24.2%.其它染料如孔雀绿(Malacllite Green,MG)和吖啶橙(Acridine Orange,AO)等也可以被降解和矿化.催化剂的循环实验表明SWR固相光催化剂易于分离,并且具有良好的稳定性,可以重复利用.  相似文献   

9.
A novel route to facilitate the degradation of dye pollutants, a class of well-known recalcitrant organic pollutants, is reported. This new approach is based on a natural polyelectrolyte microshell that was preformed by the alternate adsorption of the anionic alginate sodium (ALG) and the cationic chitosan (CHI) onto weakly cross-linked melamine formaldehyde (MF) colloidal particles, and the subsequent sacrifice of MF templates in 0.1 M HCl. The as-prepared microshells could accumulate rhodamine B (RhB) and fluorescein (Flu) efficiently in water under ordinary conditions by means of a simple mixing process. The photodegradation of the accumulated RhB and Flu was examined in the presence of Fe3+ and H2O2 under visible radiation. The accumulated RhB and Flu are rapidly degraded and the assembled shells maintain their intact spherical shape throughout the photoreaction process. Results of recycling degradation experiments and the photochemical behavior of the shells, as demonstrated by confocal laser scanning microscopy (CLSM), UV-visible spectroscopy, and scanning force microscopy (SFM), further suggest that the constructed shells may be used as environmentally friendly microcontainers for the elimination of dyes in wastewater.  相似文献   

10.
TiO2的低温制备及其对有毒有机污染物的降解   总被引:4,自引:0,他引:4  
溶胶水热法制备了TiO2粉末,用X射线衍射仪(XRD)、比表面积及孔径分析仪(BET)和透射电镜(TEM)对TiO2进行了初步表征,结果显示:纳米TiO2主要为锐钛矿相(含板钛矿相(121)),比表面积为106.2 m2/g.在紫外光(λ≤387 nm)照射条件下,以有机染料罗丹明B(Rhodamine B,RhB)和无色小分子2,4-二氯苯酚(2,4-dichlorophenol,2,4-DCP)的紫外光(λ≤387 nm)光催化降解试验为探针反应,低温(50℃)下制备的TiO2粉末具有较高光催化活性,对RhB和2,4-DCP有较好的降解效果.通过分析紫外-可见光谱(UV-Vis)、红外光谱(FTIR)和总有机碳(TOC)测定,发现TiO2/UV体系能使RhB和2,4-DCP发生有效的降解,反应5 h后RhB和7 h后2,4-DCP的矿化率分别达到81.2%和86.8%.同时,采用辣根过氧化物酶(POD)、N,N-二乙基对苯二胺(DPD)分光光度法和苯甲酸荧光光度法分别测定了在降解过程中H2O2和羟基自由基(.OH)的变化,表明TiO2光催化机理涉及到.OH历程.  相似文献   

11.
以改性玉米苞叶纤维为载体(MCF),负载Mn(II)和Fe(II)制备了Mn(II)-Fe(II)-MCF复合材料,催化H2O2氧化水中染料。通过傅立叶变换红外/近红外成像系统和扫描电子显微镜对其结构和形貌进行表征。实验结果表明:当染料浓度为10 mg·L-1,Mn(II)-Fe(II)-MCF用量为4 g·L-1,H2O2初始浓度为1.56 mmol·L-1,Mn(II)-Fe(II)-MCF对四种染料的催化效率明显不同。阳离子蓝X-GRRL(CBX-GRRL)降解效果最好,其次是甲基橙(MO)、次甲基蓝(MB)和罗丹明B(RhB)。对染料的氧化反应进行动力学分析,MO的降解反应为二级反应,CBX-GRRL、MB和RhB的降解反应均为一级反应。Mn(II)-Fe(II)-MCF适合催化氧化偶氮染料废水。  相似文献   

12.
Surface platinized TiO(2) (Pt/TiO(2)) has been frequently studied, but its photocatalytic reactivities reported in the literature are not consistent in some cases. To understand the discrepancies, the effects of Pt speciation on TiO(2) on the photocatalytic degradation (PCD) of a few chlorinated organic compounds (trichloroethylene (TCE), perchloroethylene (PCE), dichloroacetate, etc.) were investigated with several Pt/TiO(2) samples that were prepared differently. The oxidation state of Pt deposits was analyzed by X-ray photoelectron spectroscopy and was found to be the most important factor in determining the initial PCD rates of chlorinated organic compounds. TiO(2) with oxidized Pt species (Pt(ox)/TiO(2)) was less reactive than TiO(2) with metallic Pt (Pt(0)/TiO(2)) for all substrates tested. In particular, Pt(ox)/TiO(2) strongly inhibited the PCD of TCE and PCE whereas it was more reactive than pure TiO(2) for the PCD of other compounds. The photocurrents obtained with the Pt(ox)/TiO(2) electrode were lower than those with the Pt(0)/TiO(2) electrode, which was ascribed to the role of Pt(ox) species as a recombination center. It is proposed that TCE adsorbed on Pt(ox) chemically mediates the charge recombination through the redox cycle of TCE. The Pt effects in photocatalysis are highly substrate-specific and depend on the Pt-substrate interaction as well as the properties of Pt deposits.  相似文献   

13.
Photocatalytic degradation (PCD) reactions of cationic methylene blue (MB) and anionic humic acid (HA) were studied in naked TiO2 and fluorinated TiO2 (F-TiO2) suspensions in order to investigate how the modification of the TiO2 surface functional group influenced PCD reactions. Adsorption behaviors of MB and HA in the naked TiO2 followed a typical pH-dependent electrostatic interaction mechanism. On the other hand, those in the F-TiO2 were markedly changed and even showed a reversed dependence in specific pH ranges due to surface fluoride interrupting the interaction of substrates and surface titanol groups. PCD rates of MB (k MB) and its N-demethylation (Δλ max) were significantly increased by surface fluorination below circum-neutral pH range, in particular, by a factor of 12 and 54 at pH 2, respectively. In the case of HA, the fluorination had an insignificant effect on its degradation rate but appeared to change its degradation behavior. It has been suggested that, although the primary effect of fluorination enhances the photocatalytic production of hydroxyl radicals, the change in electrostatic interaction with substrates could affect PCD as well.  相似文献   

14.
A series of cationic, zwitterionic and anionic fluorinated carbocyanine dyes, spin-coated on Si substrates, were measured with time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) under Ga(+) primary ion bombardment. Detailed fragmentation patterns were developed for all dyes measured. In the positive mode, the resulting spectra showed very intense signals for the precursor ions of the cationic dyes, whereas the protonated signals of the anionic dyes were hardly detected. Differences of three orders of magnitude were repeatedly observed for the secondary ion signal intensities of cationic and anionic dyes, respectively. All measured dyes yielded mass spectra containing several characteristic fragment ions. Although the secondary ion yields were still higher for the cationic than the anionic dye fragments, the difference was reduced to a factor of < or =10. This result and the fact that M(+), [M + H](+) or [M + 2H](+) are even-electron species make it very likely that the recorded fragments were not formed directly out of the (protonated) parent ions M(+), [M + H](+) or [M + 2H](+). In the negative mode, none of the recorded spectra contained molecular information. Only signals originating from some characteristic elements of the molecules (F, Cl), the anionic counter ion signal and some low-mass organic ions were detected. A comparative study was made between TOF-S-SIMS, using Ga(+) primary ions, and other mass spectrometric techniques, namely fast atom bombardment (FAB), electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). The measurements showed that MALDI, ESI and FAB all give rise to spectra containing molecular ion signals. ESI and FAB produced M(+) and [M + H](+) signals, originating from the cationic and zwitterionic dyes, in the positive mode and M(-) and [M - H](-) signals of the anionic and zwitterionic dyes in the negative mode. With MALDI, molecular ion signals were measured in both modes for all the dyes. Structural fragment ions were detected for FAB, ESI and MALDI in both the positive and negative modes. Compared with the other techniques, TOF-S-SIMS induced a higher degree of fragmentation.  相似文献   

15.
Surfaces designed for charge reversal   总被引:2,自引:0,他引:2  
We have created surfaces which switch from cationic at pH < 3 to anionic at pH > 5, by attaching aminodicarboxylic acid units to silica and gold substrates. Charge reversal was demonstrated by monitoring the adsorption of cationic dyes (methylene blue and a tetracationic porphyrin) and an anionic sulfonated porphyrin, at a range of pH using UV-vis absorption and reflection spectroscopy. The cationic dyes bind under neutral conditions (pH 5-7) and are released at pH 1-4, whereas the anionic dye binds under acidic conditions (pH 1-4) and is released at pH 5-7. Gold surfaces were functionalized with two different amphoteric disulfides with short (CH(2))(2) and long (CH(2))(10)CONH(CH(2))(6) linkers; the longer disulfide gave surfaces exhibiting charge reversal in a narrower pH range. Adsorption is much faster on the functionalized gold (t(1/2) = 62 s) than on functionalized silica (t(1/2) = 6900 s), but the final extents of coverage on both surface are similar, for a given dye at a given pH, with maximal coverages of around 2 molecules nm(-)(2). These charge-reversal processes are reversible and can be repeatedly cycled by changing the pH. We have also created surfaces which undergo irreversible proton-triggered charge switching, using a carbamate-linked thiol carboxylic acid which cleaves in acid. These surfaces are versatile new tools for controlling electrostatic self-assembly at surfaces.  相似文献   

16.
佟欣  陈睿  陈铁红 《物理化学学报》2011,27(8):1941-1946
以溶胶-凝胶法合成了具有微米级大孔孔道结构的锐钛矿晶型TiO2, 以紫外光催化降解染料罗丹明B (RhB)考察了大孔结构材料的光催化活性. 对比研磨粉碎后失去大孔结构的材料的光催化活性, 我们发现在相同的实验条件下, 大孔结构的TiO2并不具有更好的光催化效果, 即对于本文所合成的大孔结构TiO2, 单纯的微米级大孔的形貌对材料的光催化活性没有明显的促进作用, 而更多的TiO2外表面受到紫外光照射是促进光催化效果的直接原因. 由于研磨后样品颗粒尺寸不均匀, 为了避免颗粒大小不均匀对光催化活性的影响, 我们又用十六烷基三甲基溴化铵(CTAB)和聚丙烯酸(PAA)为模板合成了形貌均匀尺寸不同的微球, 并证明了粒子尺寸越小催化效果越好.  相似文献   

17.
The incorporation of carbon nanotubes to a Nafion/tetraruthenated cobalt porphyrin/ glassy carbon electrode (GC/Nf/CoTRP vs GC/Nf/CNTCoTRP) enhanced the amperometric determination of hydrogen peroxide. Both electrodes produced a decrease in the overpotential required for the hydrogen peroxide oxidation in about 100 mV compared to glassy carbon under the same experimental conditions. Nevertheless, for GC/Nf/CNT/CoTRP, the increase in the current is remarkable. The GC/Nf/CoTRP modified electrode gave no significant analitycal signal for hydrogen peroxide reduction. Moreover, a great increase in current is observed with GC/Nf/CNT/CoTRP at ?150mV which suggests a significant increase in the sensitivity of the modified electrode. Scanning electrochemical microscopy (SECM) revealed an enhancement in the electroactivity of the GC/Nf/CNT/CoTRP modified electrode. This fact has been explained in terms of enhanced homogeneity of the electrodic surface as a consecuence of better dispersibility of CNT‐CoTRP produced by a Nafion polyelectrolyte.  相似文献   

18.
周明  杨华  县涛  杨阳  张云川 《催化学报》2015,(11):1987-1994
超声波在水中传播时会产生大量空化气泡,空化气泡经历成核、生长和瞬间崩塌等过程,并在崩塌瞬间产生局部高温和高压,过程中会发出瞬间闪光,即声致发光.局部高温高压及声致发光可将半导体价带上的电子激发至导带,形成电子/空穴对,电子和空穴迁移至半导体颗粒表面,参与一系列氧化还原反应致使有机污染物发生分解.由于超声波在各种液体中都具有很强的穿透能力,因此与半导体光催化技术相比,半导体超声催化技术在降解高浓度和不透明染料废水时具有明显优势. LuFeO3是稀土正铁氧体中的一员,具有独特磁结构、巨介电常数及多铁性,近年来引起了人们极大的研究兴趣.同时, LuFeO3也是一种窄带隙半导体材料,使其可以作为一种潜在的超声催化剂,但相关报道很少.半导体材料的晶粒尺寸及形貌对其超声催化活性的影响非常大,因此制备出不同晶粒尺寸及形貌的LuFeO3颗粒并研究其超声催化性能具有重要意义.目前LuFeO3的主要制备方法为传统的固相反应法,该法需要反复研磨和高温煅烧使原料彻底反应,而且制备出的颗粒尺寸较大,相互粘连严重,形貌难以控制.在众多纳米材料制备方法中,水热法在调控晶粒尺寸及形貌上具有巨大优势.本课题组曾采用水热法成功制备了单相的LuFeO3颗粒,通过改变NaOH浓度,可以对产物的晶粒尺寸及形貌进行调控.基于此,本文以酸性橙(AO7)、罗丹明B (RhB)、甲基橙(MO)和亚甲基蓝(MB)为目标降解物,考察了水热法所制备的LuFeO3颗粒在超声辐照下的超声催化性能,并系统研究了晶粒尺寸及形貌、无机离子和乙醇对LuFeO3颗粒超声催化活性的影响及LuFeO3颗粒重复利用性能.以对苯二甲酸(TPA)为分子荧光探针,采用光致发光(PL)技术检测在超声辐照下LuFeO3反应液中产生羟基自由基(?OH)的情况,探讨了LuFeO3颗粒的超声催化机理.超声催化反应结果表明,采用水热法制备的LuFeO3颗粒在超声辐照下表现出良好的超声催化活性.在NaOH浓度为0.625 mol/L时制备的LuFeO3颗粒尺寸最小,表现出最好的超声催化活性;经过30 min超声催化反应后,AO7,RhB,MO和MB的超声降解率分别为89%,82%,73%和67%.加入Cl?, NO3?, SO42?, PO43?和HCO3?对LuFeO3颗粒的超声催化活性有抑制作用.向反应液中加入2%(v/v)乙醇后, LuFeO3颗粒在超声辐照下对AO7几乎没有降解,表明?OH在超声催化中起重要作用.重复回收实验结果表明, AO7的降解率随着循环次数增加有所下降,这可能是由于催化剂回收时的损失所致.尽管如此,催化剂仍能保持较高的催化活性,经4次循环后,反应30min时AO7的降解率为65%.PL结果表明, LuFeO3颗粒在超声催化反应中产生了大量的?OH,添加乙醇可以消耗?OH并抑制染料的超声催化降解.由此可见,?OH是超声催化降解RhB的主要活性物种.我们对LuFeO3导带和价带的电位进行了估算,从热力学角度对LuFeO3颗粒超声催化降解染料的机理做出了初步解释.  相似文献   

19.
Adsorption of reactive dyes on titania-silica mesoporous materials   总被引:5,自引:0,他引:5  
This paper presents a study on the adsorption of two basic dyes, methylene blue (MB) and rhodamine B (RhB), from aqueous solution onto mesoporous silica-titania materials. The effect of dye structure, adsorbent particle size, TiO(2) presence, and temperature on adsorption was investigated. Adsorption data obtained at different solution temperatures (25, 35, and 45 degrees C) revealed an irreversible adsorption that decreased with the increment of T. The presence of TiO(2) augmented the adsorption capacity (q(e)). This would be due to possible degradation of the dye molecule in contact with the TiO(2) particles in the adsorbent interior. The adsorption enthalpy was relatively high, indicating that interaction between the sorbent and the adsorbate molecules was not only physical but chemical. Both Langmuir and Freundlich isotherm equations were applied to the experimental data. The obtained parameters and correlation coefficients showed that the adsorption of the two reactive dyes (MB and RhB) on the adsorbent systems at the three work temperatures was best predicted by the Langmuir isotherm, but not in all cases. The kinetic adsorption data were processed by the application of two simplified kinetic models, first and second order, to investigate the adsorption mechanism. It was found that the adsorption kinetics of methylene blue and rhodamine B onto the mesoporous silica-titania materials surface under different operating conditions was best described by the first-order model.  相似文献   

20.
采用溶胶-凝胶法制备了不同铕(Eu)掺杂量的TiO2纳米颗粒(Eu-TiO2),利用透射电镜(TEM),X射线光电子能谱(XPS),X射线衍射(XRD)及紫外可见漫反射(UV-Vis DRS)等方法对Eu-TiO2进行了物理特性的初步表征.结果表明:与未掺杂纳米TiO2比较,Eu-TiO2禁带宽度变窄,具有可见光光催化活性.在可见光下(λ≥420 nm)照射下,以光催化降解染料罗丹明B(Rhodamine B,RhB)为目标反应,探讨了Eu-TiO2不同制备条件对RhB降解光催化活性的影响,优化得到制备高活性Eu-TiO2最佳pH为3、掺杂比例(nEu/nTi)为0.05%、煅烧温度为500 ℃.研究了可见光照射下Eu-TiO2降解RhB和无色有机小分子水杨酸(SA)光催化反应条件及降解特性,RhB的12 h深度氧化矿化率为60.2%,SA的8 h降解率达到100%.通过跟踪测定可见光下Eu-TiO2光催化反应过程中氧化物种的变化,研究了可见光激发Eu-TiO2光催化反应机理,表明其光催化反应主要涉及羟基自由基(·OH)历程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号