首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-nucleon transfer reactions56Fe(12C, X) have been studied at an incident12C energy of 60 MeV. Angular distributions of10Be and9Be corresponding to 2p and 2p 1n transfer reactions in transition to low-lying states in the residual nuclei have been measured. The angular distribution data for 2p transfer have been analysed in terms of finite range DWBA calculations assuming a one-step transfer of two protons. The spectroscopic factors for three low-lying transitions observed in56Fe(12C,10Be)58Ni have been extracted. Transfer probabilities for the ground state transition in two- and three-nucleon stripping channels have been obtained and compared with the corresponding sequential transfer probabilities in order to emphasise the role of direct transfer of nucleons vis-a-vis sequential transfer.  相似文献   

2.
The elastic scattering and the 6He angular distributions were measured in 7Li + 7Li reaction at two energies, E lab = 20 and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels. The one-step proton transfer was found to be the dominant reaction mechanism in 6He production.   相似文献   

3.
Angular distributions for deuteron-16O elastic scattering and the 16O(d, p)17O reaction leading to levels with Ex = 0.0, 0.87, and 5.08 MeV have been measured at energies of 25.4, 36.0 and 63.2 MeV. The elastic deuteron data have been fit with a standard spin one optical model potential to obtain parameters for use in a DWBA analysis of the (d, p) data. The potential found in the search is shown to be consistent with other data taken in the range from 25 to 82 MeV. In addition to this deuteron optical potential, an adiabatic deuteron potential, which includes the effects of deuteron breakup, was used in the DWBA analysis. The neutron form factor was selected independent of the width of any state. The mean square radius, a single particle property, is used to find the well parameters and it determines the width of the single particle state. The spectroscopic factors obtained for the ground and first excited states are between 0.8 and 1.0 and are consistent with a large single particle parentage for these states and lower energy data. The width extracted from the DWBA analysis of the 5.08 MeV unbound state was 20% less than that obtained from elastic neutron scattering to the same state, possibly pointing up some difficulties with DWBA procedures commonly used. The adiabatic deuteron potential yields spectroscopic factors that are energy independent to 20% and gives satisfactory calculated angular distribution shapes for angles less than 40°. The conventional deuteron potential gives less satisfactory calculated shapes with the consequent introduction of some ambiguity in the derived spectroscopic factors.  相似文献   

4.
《Nuclear Physics A》2004,730(3-4):285-298
The 6He+12C elastic and inelastic scattering and the 6He+12C→α+14C reaction have been measured using a 18.0 MeV 6He beam. Experimental results for the elastic scattering are in fair agreement with optical model predictions, using the potentials found in the analysis of 6Li scattering on 12C at similar energies. In triple coincidences, the 6He+12C→10Be+2α reactions were clearly seen, with the 10Be nucleus left in ground and several excited states. The dominant mechanism of this reaction is sequential decay through cluster states of 14C.  相似文献   

5.
The angular distribution of 26 MeV/n 8He ions elastically scattered from a gaseous helium target was measured in a wide CM angular range. Results are discussed in terms of the potential scattering and neutron transfer. The angular distributions of elastic scattering as well as 1n and 2n transfer reactions of these ions on protons are presented. Finite-range DWBA calculations made for the 2n transfer reaction leading to the ground (0+) and excited (2+) states of 6He underestimate the cross section for 2n transfer to 6He(0+). Analysis of data for this reaction channel suggests the importance of a direct 5H-cluster exchange process. A resonance state of 5H with an energy of 2 MeV above the decay threshold n+n+ 3H was obtained for the first time by making use of the reaction p(6He,2He)5H.  相似文献   

6.
In this work, angular distribution measurements for the elastic channel were performed for the 9Be + 12C reaction at the energies ELab=13.0ELab=13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the double folding São Paulo potential. The experimental elastic scattering angular distributions were well described by the optical potential at forward angles for all measured energies. However, for the three highest energies, an enhancement was observed for intermediate and backward angles. This can be explained by the elastic transfer mechanism.  相似文献   

7.
Some one-neutron halo nuclei can emit a proton in a β decay of the halo neutron. The branching ratio towards this rare decay mode is calculated within a two-body potential model of the initial core + neutron bound state and final core + proton scattering states. The decay probability per second is evaluated for the 11Be, 19C and 31Ne one-neutron halo nuclei. It is very sensitive to the neutron separation energy.  相似文献   

8.
We have studied an effect of neutron and triton transfer reactions on the p +^6He elasticscatteringat25 MeVbymeansofcoupled - reaction - channelcalculations.Itisfoundthatwhenthetransferreactionsareexplicitlyincludedinthecalculationstheimaginarypartoftheinput$p + $6He optical model potential has to be reduced by 52 percent while its real part enhanced by 15 percent in order to fit the elastic-scattering data. The effect of transfer channels on the real part of this potential is somewhat weaker than that of 6He breakup reported previously. However, for the imaginary part, the effect of transfer channels is dominant. It is concluded that while the breakup contribution to proton elastic scattering mainly affects the real part of the bare potential, the contribution of transfer channels affects mainly its imaginary part.  相似文献   

9.
The elastic scattering of α-particles on 6Li nuclei has been measured from 20° to 170° (c.m.) and the inelastic scattering to the first excited state of 6Li has been measured for forward and backward angles. The elastic scattering angular distributions are calculated (i) in terms of pure potential scattering, (ii) in terms of potential scattering with an l-cut-off on the imaginary part of the potential and (iii) in terms of the coherent addition of the potential scattering amplitude and of the exchange amplitude. The third method gives the best fit to the data. The inelastic angular distributions are compatible with the macroscopic calculations, except in the very backward region where exchange phenomena are also shown to dominate.  相似文献   

10.
The present work provides a literature survey of elastic scattering of exotic nuclei from 6He to 17F. It presents a set of definitions that allow different analyses to be put into a common language. A calculational approach is proposed that yields consistent results across different beams and targets so that conclusions concerning the influence of virtual and real breakup as well as transfer couplings on the elastic scattering may be drawn. Calculations of elastic scattering around the Coulomb barrier are emphasised, employing a Pb target whose large Z allows the interplay between nuclear and Coulomb forces to be exploited to maximise possible effects arising from proton or neutron haloes or skins. A series of test calculations is performed and where possible compared to data, demonstrating that there are instances where coupling to transfer channels can have a large effect on the elastic scattering angular distributions. By careful choice of target/beam combination, different aspects of the coupling effects may be emphasised.  相似文献   

11.
Low-lying states in 83Se have been studied through proton-induced isobaric analog resonance (IAR) reactions. Excitation functions for elastic and inelastic proton scattering were measured in the bombarding energy range 4.5– to 7.7 MeV. Angular distributions of proton inelastic scattering cross sections for the reaction 82Se(p, p')82Se(0.655 MeV 2+) and angular correlations of the inelastic protons and the associated 2+-0+ de-excitation γ-rays were measured on observed resonance peaks. In the analysis for the inelastic scattering, direct reaction contributions to the IAR were taken into account. Correlations between the low-lying states in 83Se and the excited 2+ core state are discussed.  相似文献   

12.
The elastic and inelastic scattering of 178 MeV protons from 58Ni and 60Ni has been studied. Angular distributions were measured for the differential cross sections for elastic scattering as well as inelastic scattering from excited states below about 5 MeV, all with natural parity. For the elastic and for the inelastic scattering from the first excited state (2+ in both nuclei, the angular distributions for the polarization were also measured. The measurements extend out to c.m. angles of about 60°, corresponding to a momentum transfer of about 600 MeV/c.The elastic and inelastic scattering data were compared to the results of coupled-channel calculations in the vibrational model using a deformed spin-orbit interaction of the full Thomas form. Good agreement was found in general showing that the main features of the experimental results are well described in this model.  相似文献   

13.
Cross section angular distributions of60Ni(16O,12C)64Zn reactions leading to three strongly excited states at 60 MeV incident energy and the16O+60Ni and12C+64Zn elastic scattering at 60 MeV respectively 45 MeV and 54 MeV have been measured using aQ3D magnetic spectrograph. EFR-DWBA calculations assuming the transfer of anα-cluster in its 0s ground state are able to describe the general features of the strongly oscillating experimental angular distributions using a surface transparent optical model potential. The optical model parameters used in the DWBA calculations are obtained from fits of the elastic scattering data of incident and exit channels. The importance of “correct” optical model parameters in the exit channels for relative spectroscopic factors will be discussed and the extracted relative spectroscopic factors will be compared to previous (6Li,d) results.  相似文献   

14.
The 54Fe(τ, d)55Co reaction has been studied at 25 MeV incident energy with a split-pole spectrometer. About one hundred levels have been observed in 55Co up to 10 MeV excitation energy. Angular distributions have been measured and analyzed with DWBA and Gamow functions as form factors for unbound levels. The 54Fe(τ,dp?)54 reaction has been investigated at 24 MeV incident energy. The angular distributions of the emitted protons were measured in coincidence using method 2 of Litherland and Ferguson, with 0 detection of deuteron groups. Spins, population parameters, branching ratios and proton partial widths for the transitions to the ground and excited states of 54Fe were determined from the analysis of the angular correlation data. The results of these two experiments provide a large number ofspectroscopic properties of unbound proton states and in particular of analog states of 55Fe low-lying levels. The IAS of the 32? ground state of 55Fe is observed to be split between two individual levels. The amplitude of neutron coupling to the first 2+ excited state of 54Fe is obtained for the lg92 and 2d52 low-lying parent statfes in 55Fe. summed spectroscopic factors and the centroid energies of the proton states in 55Co are obtained. A comparison is made with previous (τ, d), (d, p) and (p, p) results.  相似文献   

15.
The elastic and inelastic scattering of protons from 6Li has been studied at incident energies of 25.9, 29.9, 35.0, 40.1 and 45.4 MeV. The 2.18 MeV (3+, T = 0) first excited state of 6Li was found to be strongly excited, but the 3.56 MeV (0+, T = 1) second excited state was quite weakly excited. Angular distributions for excitation of the 2.18 MeV level were measured at all five energies, while angular distributions for excitation of the 3.56 MeV level were extracted only at 25.9 and 45.4 MeV. To test the applicability of the optical model for the scattering of protons from such a light nucleus the elastic scattering angular distributions have been analyzed using the eleven-parameter search code SEEK. Available polarization angular distributions were included in the analysis. Reasonable fits to the data have been obtained with an average geometry potential. Theoretical estimates of the real part of the optical potential and the inelastic scattering differential cross sections have been made using the microscopic model for proton-nucleus scattering. Both phenomenological and realistic forces have been considered and the necessary nuclear transition densities have been extracted from experimental elastic and inelastic electron scattering data. An estimate of a possible spin-spin term in the optical potential has also been made.  相似文献   

16.
Neutron elastic scattering on Si, S and Ca has been measured at 11, 20 and 26 MeV using the Ohio University 11 MeV Tandem Van de Graaff. A time-of-flight technique was used and the angular distributions covered an angular range from 15° through 155°. The measured cross sections were corrected for dead time, source anisotropy, detector efficiency, finite geometry, neutron flux attenuation and multiple scattering. Individual as well as global fits to the data using an optical-model search code are presented. The comparison of the optical-model analysis to the neutron and proton elastic scattering data in the case of 40Ca, allows an empirical determination of the Coulomb correction term which may be parametrized as 0.46 Z/A13. It is also shown that the elastic scattering and inelastic scattering to the first 2+ states in 28Si and 32S may be fitted using the same optical-model parameters obtained for 40Ca using the coupled-channel formalism.  相似文献   

17.
Within the context of a statistical model, that incorporates final-state interaction between a pair of fragments, we have calculated the energy spectra associated with the production of different isobaric pairs as a function of their lab kinetic energy and isobaric and elemental distributions of nuclei produced in the 4He$ + $28Si reaction at cm incident energies of 102.7, 173.7, 300, 500, and 1000MeV. Double differential cross-section of isobars 16, 20, and 24 as a function of their lab kinetic energies at 30° and the same for isobar 24 at 10°, 30°, 60°, and 90° have been calculated at cm incident energies of 102.7 and 173.7MeV and compared with the data of Woo et al. Calculated yields follow the trend of the data at each angle, and calculated angular distributions also reproduce the general trend of the observed ones. A key feature of the model is that it allows for fragments to be emitted in ground states as well as in excited states that are allowed by the conservation of energy. The analysis establishes that the fragments are emitted in excited state. The excitation energies for A = 24 and 16 are deduced from the data. The observed angular distributions for A = 7, 12, 16, 20, 24, and 28 are well accounted for assuming them to be emitted in excited states. The relative production probabilities for different elements and isobars are energy dependent. The yields for unstable elements, 5Li, 8Be, and 26Al, are found to be significant. The relative fragmentation probabilities of all allowed isotopic pairs have been presented.  相似文献   

18.
The g-factors of the intra-band states 12,13,14,15 in a magnetic-rotational band built on the 11 state in 82 Rb are measured for the first time by using a transient magnetic field-ion implantation perturbed angular distribution (TMF-IMPAD) method.The magnetic-rotational band in 82 Rb is populated by the 60 Ni(27 Al,4pn) 82 Rb reaction,and the time-integral Larmor precessions are measured after recoil implantation into a polarized Fe foil.The calculation of g-factors is also carried out in terms of a semi-classical model of independent particle angular momentum coupling on the basis of the four-quasiparticle configuration π(g 9/2) 2  π(p 3/2,f 5/2)  ν (g 9/2).The measured and calculated g-factors are in good agreement with each other.The g-factors and deduced shear angles decrease with the increase of spin along the band.This clearly illustrates the shear effect of a step-by-step alignment of the valence protons and neutrons in magnetic rotation.The semi-classical calculation also shows that the alignment of the valence neutron angular momentum is faster than that of the valence protons,which results in a decrease of g-factors with increasing spin.The present results provide solid evidence of the shear mechanism of magnetic rotation.  相似文献   

19.
The quasi-elastic scattering angular distribution of the proton drip line nucleus 17F on a 12C target was measured at 60 MeV. The experimental data have been compared with the theoretical analysis based onto optical model and continuum discretized coupled channels (CDCC). The couplings between breakup and elastic scattering channels, and between inelastic and elastic scattering channels resulted very weak. In order to explore the breakup effects the total reaction cross-section was deduced from the angular distribution of the quasi-elastic scattering data, and then compared with the existing data for the other weakly and tightly bound nuclei on 12C target using a universal function. From this comparison, we concluded that the breakup effect is not important for weakly bound projectiles on the light target as obtained also with the CDCC analysis.  相似文献   

20.
Coplanar energy sharing spectra for p + d breakup at 65, 85 and 100 MeV proton bombarding energies were measured using the University of Maryland sectored isochronous cyclotron, by measuring the energies of either two protons or one proton and one neutron in coincidence. The detector angles were chosen to enhance either the p-p or p-n quasifree scattering, or the p-n final state interaction. The energy dependence of the peak cross section at equal symmetric quasifree scattering angle pairs was extracted for the 2H(p, 2p)n and 2H(p, pn)p reactions. Quasifree angular distributions were obtained for the reaction 2H(p, 2p)n at 65 MeV and for the reaction 2H(p, pn)p at 65, 85 and 100 MeV. The plane wave impulse approximation theory can only qualitatively reproduce the shape of the quasifree scattering peak in the energy sharing spectra and the shape of the p-p quasifree angular distribution. The discrepancies observed between the plane wave impulse approximation theory and the experimental data imply that the presence of the spectator particle (i.e., the multiple scattering effects) has a strong influence on the magnitude and the shape of the experimental results. Multiple scattering calculations were carried out in the three-body model of Aaron, Amado and Yam except that the S-wave separable two-body amplitudes were modified to fit two-nucleon elastic scattering data at higher energies. Comparisons of the results of these multiple scattering calculations to the experimental data show excellent quantitative agreement throughout the energy range and the angular region of this experiment, except for a few cases in which this model is inherently insufficient; namely, regions in which the Coulomb interaction is important, or regions for which a Hulthén wave function is inaccurate and the off-shell effects are not properly taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号