首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Z箍缩上的套筒准等熵压缩技术可以用来研究材料的高压状态方程。通过MDSC磁流体力学程序,以铝为负载材料,对PTS shot37负载电流进行非冲击压缩负载设计。结果显示,在原始电流下,没有合适的铝套筒尺寸可以实现非冲击压缩;对原始电流进行波形调节,将电流上升时间调为202和303ns后,获得了满足非冲击压缩条件的套筒尺寸范围。当电流上升时间为303ns时,半径为2.5mm,厚度为0.6mm的套筒尺寸在电流最大时刻,保留固相的厚度为0.12mm,此时固相最大压力为63GPa,最大内爆速度为15km/s。  相似文献   

2.
毛重阳  薛创  肖德龙  王小光  王冠琼  丁宁 《强激光与粒子束》2019,31(1):015001-1-015001-4
利用FCM-PTS程序与负载动力学程序耦合模拟研究了聚龙一号装置中主开关导通时刻对Z箍缩实验中负载电流峰值和上升时间的影响。结果表明,虽然聚龙一号装置上下支路三平板传输线的单向传输时间相差20 ns,但是当上下支路主开关导通时刻的时间差为22 ns时,负载电流的峰值最大,上升时间最短。将上下支路主开关导通时刻的时间差设置为20 ns和22 ns时,主开关导通时刻10 ns的抖动导致负载电流峰值损失最大值分别为163 kA和136 kA,上升时间最多分别延长2.4 ns和2.9 ns。  相似文献   

3.
基于多质点薄壳模型对准球形丝阵负载参数进行优化,使得终态等离子体具有预期的内爆特性。通过对丝阵初始位形优化,可以获得期望的终态等离子体壳纵横比,并且终态纵横比对负载初始质量变化不敏感。对于固定电流波形(峰值1.2 MA、上升时间80ns),优化计算了初始丝长度15.4mm的丝阵线质量。结果表明,当丝阵初始线质量约为150μg/cm时,赤道半径为2mm、纵横比为1的终态等离子体壳具有最大动能1.5kJ。同时,还针对不同幅度及上升时间的电流进行优化计算,计算结果表明终态等离子体壳的优化的最高动能与电流峰值平方成正比,与最高动能相应的线质量与电流上升时间平方成正比。  相似文献   

4.
 开展了驱动电流为45,75和105 kA以及阴极直径分别为Φ20 mm和Φ40 mm下的等离子体断路开关性能实验研究。结果表明:随着发生器驱动电流增加,负载电流上升时间逐渐减小,最高电压倍增系数逐渐增加。与阴极直径为Φ20 mm的等离子体开关相比,阴极直径为Φ40 mm的等离子体开关导通时间和负载电流上升时间增加,开关电压和电流转换效率降低。实验获得的最高电压倍增系数和电流转换效率分别为4.9和97%,负载电流上升时间小于100 ns。  相似文献   

5.
针对ns级脉冲电流信号的测量,设计了一种带磁芯的新型自积分式罗氏线圈,具有信噪比高、动态范围广等优点。屏蔽盒开气隙防止涡流。屏蔽盒外层采用聚氨酯进行整体封装,聚氨酯层厚度大于1.5 mm,可耐受大于20 kV的冲击电压。采用高压方波发生器与Pearson4100线圈对罗氏线圈标定。罗氏线圈的参数为:灵敏度0.018 8 V/A,最高上升时间小于20 ns,方波脉宽300 ns,最大峰值电流300 A。  相似文献   

6.
根据电爆炸箔断路开关的简化数值模型和不可压缩固体套筒的零维模型,利用Matlab编写了用于模拟圆盘型发生器驱动固体套筒内爆的一体化程序D-Liner,对圆盘型发生器、电爆炸箔断路开关、固体套筒内爆的耦合过程进行了数值模拟,分析了电爆炸断路开关工作电压、套筒半径、套筒速度的变化过程以及电爆炸断路开关对发生器电流波形的影响,并对套筒参数进行了优化设计。计算结果表明,以直径400 mm的十单元圆盘型发生器为驱动源,采用长度72 cm、厚度120 m的铜箔作为脉冲锐化开关,当初始电流为5.9 MA时,圆盘型发生器能够获得35 MA的脉冲大电流,电爆炸箔断路开关在击穿与之并联的间隙开关之后可以在固体套筒上产生230 kV的高电压和31 MA、特征上升时间1.6 s的脉冲大电流,能够把50 g柱形铝套筒加速到13.7 km/s。  相似文献   

7.
强激光烧蚀低密度有机材料形成等离子体射流碰撞,可以对材料进行准等熵加载,比激光冲击加载应变率低,相同压强下可以获得更高的压缩度和更低的温升,在状态方程、飞片加速等方面有很强的应用前景.在星光Ⅲ置上首次开展了等离子体射流驱动小尺寸铝飞片及姿态诊断联合实验.通过调控有机材料厚度和真空间隙长度,获得了厚度20μm、直径约400μm的铝飞片,飞片加速时间长达200 ns.基于ps拍瓦激光的高能X光背光照相结果显示铝飞片在飞行约400μm距离后仍然保持了很好的飞行姿态和完整性.  相似文献   

8.
介绍了磁探针测量等离子体电流的设计原理,针对Z箍缩实验负载的实际结构特点和现场布局,制作出应用于诊断脉冲功率装置Z箍缩实验负载通过电流的微型磁探针,并通过建立相同结构尺寸的模拟负载装置的方法,实现了对其灵敏度的标定。实验结果显示:在脉冲功率装置峰值电流1.2MA、电流上升时间60ns时,由微型磁探针测得的负载电流与加速器监测电流存在12%的幅度差异,电流峰值时刻存在5ns的差异,说明微型磁探针技术测量Z箍缩负载电流的结果是可靠的。  相似文献   

9.
为了研究电磁能量从脉冲功率驱动器到Z箍缩负载的传输与转化过程,采用电路模型描述驱动器关键部件的充放电过程,采用辐射磁流体模型描述负载的动力学过程并获取动态电感和动态电阻参数,建立了驱动器与负载耦合的全电路数值模拟程序.将该程序应用于"强光一号"装置,研究表明,模拟获得的驱动器电压波形、负载电流波形与实验结果符合较好,各段水介质传输线上电磁脉冲宽度逐级压缩,功率逐级放大.在典型的钨丝阵Z箍缩辐射源物理实验条件下,当初级储能电容器充电35 kV时,中储电容处的电磁功率(峰值)为0.23 TW,上升时间(10%—90%)为550 ns,形成线处的电磁功率为0.80 TW,上升时间为160 ns,水介质传输线末端的电磁功率为1.46 TW,上升时间为45 ns.负载电流为1.5 MA,产生的X射线辐射功率为0.58 TW.  相似文献   

10.
电作用量在磁驱动固体套筒内爆设计分析中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
磁驱动固体套筒内爆作为标准柱面冲击/准等熵汇聚压缩加载方式,在流体动力学、材料物性和聚变能源等领域具有广泛应用前景.在特定加载条件下,套筒飞层材料、半径和厚度的选择决定了套筒内爆力学行为,而电流烧蚀限制了所能选择的参数范围.通过薄壁套筒假定引入作为动力学参量的电作用量概念,利用不可压缩零维模型给出了低线电流密度下薄壁套筒尺寸优化设计方法和套筒飞层材料选择的原则;将修正后的电阻率-电作用量模型嵌入自编的一维弹塑性磁流体力学程序SOL1D进行模拟计算,分别与FP-1装置及ZR装置上的实验结果进行比对,表明在大径厚比和低线电流密度加载下,利用电作用量估算内爆速度及利用电爆炸丝实验获取的各阶段电作用量判断套筒物理状态是有效的.  相似文献   

11.
在"强光一号"装置上, 利用微型磁探针系统测量了钨丝阵负载内部的消融等离子体携带的电流, 对比了有无泡沫柱两种负载条件下内部电流分布的差异, 获得了稳定可靠的实验数据. 实验中使用了由42 根4.2 μm 钨丝组成的直径12 mm 的丝阵负载, 脉冲电流峰值为1.34 MA, 上升时间约70 ns. 结果表明: 在电流放电开始约20 ns 后, 半径3.2 mm 处的磁探针有明显的信号输出, 随后的20 ns 内, 内部等离子体分流比迅速上升至约20%, 并在30—40 ns 内基本保持稳定. 丝阵加载泡沫柱后, 内部电流值在Z 箍缩前期没有明显变化.  相似文献   

12.
阚明先  贾月松  张南川  傅贞  章征伟 《强激光与粒子束》2023,35(2):025003-1-025003-5
采用二维磁驱动数值模拟程序(MDSC2)对大电流脉冲功率装置FP-2上的回流罩结构Z-箍缩实验exp90和exp60进行了数值模拟。数值模拟表明,回流罩结构Z-箍缩实验测量电流/回路电流不是负载套筒电流,回流罩结构Z-箍缩实验中回路电流不完全从负载套筒通过,回路电流和负载套筒电流之间存在一个结构系数,提出了边界磁场强度与回路电流关系的新公式。采用具有结构系数的边界磁场强度公式和磁流体力学程序能正确模拟exp90和exp60两个回流罩结构Z-箍缩实验,模拟的套筒内径运动速度和实验测量速度相一致。回流罩结构Z-箍缩实验的结构系数为一常数,仅由回流罩的初始结构确定。90 mm和60 mm内直径套筒的结构系数分别为0.87和0.90。在套筒初始厚度、绝缘材料等其它条件相同的情况下,套筒内径越大,回流罩结构Z-箍缩实验的结构系数越小。  相似文献   

13.
为了对即将建成的PTS装置的实验能力进行分析,对装置的工作模式及波形调节能力进行了分析。装置具有三种工作模式:短脉冲模式、长脉冲模式和波形调节模式。在不同的工作模式下,装置可以进行不同负载的实验研究。在基本工作模式下,在15 nH负载上输出前沿90 ns、幅值8~10 MA脉冲电流。通过电路模拟,对装置在三种工作模式下预计的负载电流输出进行了分析,短脉冲模式下装置负载电流的上升时间约90 ns,长脉冲模式时约200 ns,波形调节模式时可以达到400 ns。模拟结果表明,通过调节激光触发气体开关的触发方式和脉冲输出开关及装置其他参数,PTS装置可以输出脉冲前沿100~400 ns、波形形状在一定范围可调的强电流脉冲。  相似文献   

14.
何安  丁瑜  康军军  任济  王贵林  张朝辉  夏明鹤  计策 《强激光与粒子束》2018,30(3):035003-1-035003-5
介绍了Z箍缩初级实验平台“聚龙一号”装置24路模块的精确控制技术和实验结果, 通过采用24个激光触发开关来控制24路模块的精确导通, 实现了对“聚龙一号”装置输出电流波形的精确控制和调节。24个激光触发开关由12台Nd: YAG四倍频脉冲激光器来触发, 每台激光器分光后触发2路激光开关。实验结果表明: 24路激光之间的抖动小于1.0 ns, 激光开关的抖动小于1.5 ns,“聚龙一号”装置在主Marx充电电压为65 kV时, 当24路模块同步导通时,获得负载电流9.8 MA, 电流前沿上升时间(10%~90%)为75 ns;在24路模块分时放电时,实现了对电流波形的精确调节,电流前沿上升时间(10%~90%)可以拓展到600 ns, 对应的负载电流峰值为5.5 MA,电流波形的模拟值与实验测量结果基本一致,在相同负载和实验条件下,获得的电流波形具有很好的重复性。  相似文献   

15.
作为一种重要的柱面会聚冲击和准等熵压缩加载源,磁驱动固体套筒内爆技术已广泛应用于高能量密度物理实验研究.针对FP-1装置驱动的固体套筒内爆动力学过程,建立了含强度的一维磁流体力学模型,并对典型实验进行了模拟.计算获得的套筒内爆速度同实验结果较为相符.模拟结果显示,该装置在40 kV充压条件下,可以将直径3 cm,厚0.5 mm的铝套筒加速至1.1 km/s,内壁速度超过1.5 km/s,同时保持大部分材料为固体状态.内爆套筒与相同材料靶筒碰撞产生的冲击压力约9 GPa.改变靶筒内部填充气体的压力,可以获得不同的靶筒运动速度、轨迹以及反弹半径,以满足不同类型实验的研究需要.  相似文献   

16.
快脉冲直线变压器驱动源模块的原理及实验   总被引:9,自引:8,他引:1       下载免费PDF全文
 介绍了直线型变压器驱动源(LTD)产生快脉冲的基本原理及技术优势,阐述了快脉冲LTD模块设计的要点,设计了输出脉冲上升时间小于100 ns的快脉冲LTD模块,并进行了初步的实验研究。实验得到该LTD模块充电±16 kV时,短路放电的电流峰值为23.7 kA,电流振荡1/4周期为69.6 ns;充电±50 kV驱动0.85 Ω负载时,电流峰值为41.4 kA,上升时间为36.8 ns(10%~90%)和60.8 ns(0~100%)。  相似文献   

17.
介绍了用于Z箍缩驱动器的快脉冲直线型变压器驱动源(LTD)原型模块设计和初步实验结果。该模块采用32个子块并联,每个子块由两台100kV/100nF脉冲电容器和一只200kV多间隙气体开关串联组成。32只开关由4路高压脉冲分别触发。模块直径为2.9m,厚度约27cm。电路模拟结果表明,在±90kV充电电压下,输出电流幅值为1.0MA,电流上升时间(10%~90%)约118.6ns。初步实验结果表明,在约90mΩ近似匹配电阻负载上获得的电流为995kA,上升时间(10%~90%)为120.8ns,脉冲宽度约335.2ns。实验结果与电路模拟结果较为接近。  相似文献   

18.
Z箍缩丝阵负载参数的优化设计   总被引:3,自引:3,他引:0       下载免费PDF全文
宁成  杨震华  丁宁 《强激光与粒子束》2003,15(12):1200-1204
 以俄罗斯S-300 Z-pinch 装置的负载电流波形为基准,利用Z箍缩的质点模型对钨丝阵负载的初始半径和线质量进行了系统的优化计算,得到了不同电流幅值的电流波形所对应的优化丝阵负载参数。发现了负载最大内爆动能与负载电流幅值的平方成正比关系。电流上升时间对最优丝阵负载参数的影响的计算表明,随着负载电流上升时间的增大,负载的最优线质量也要增大。  相似文献   

19.
固体套筒内爆是采用实验方法研究高能量密度状态下的材料力学性能的重要加载手段之一,国内已经建立起若干开展电磁内爆研究的驱动器。从电流脉冲前沿对固体套筒内爆性能影响的角度进行分析,为如何选择现有的实验装置开展固体套筒内爆实验研究提供依据。采用不可压缩零维模型进行计算,获得了套筒内爆速度受套筒尺寸、电流幅值以及电流脉冲前沿的影响情况。计算结果表明,开展固体套筒内爆的实验研究应选择电流脉冲前沿大于2 s的装置,这也为未来设计驱动能力更强的固体套筒内爆实验装置奠定了基础。  相似文献   

20.
基于聚龙一号装置的超高速飞片发射实验研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
磁驱动加载技术通过脉冲功率源将超大脉冲电流加载到实验负载区,从而形成随时间平滑上升的磁压力,实现对样品的准等熵压缩和超高速飞片发射.本文基于聚龙一号装置的输出特性参数,依次从负载结构、电极尺寸、电流波形和诊断系统等方面,分别设计完成了两种负载构型的超高速飞片发射实验.其中应用单侧带状负载发射尺寸Φ10 mm×0.725 mm的LY12铝飞片速度达到11.5 km/s,磁驱动加载压力近0.9 Mbar.比较模拟计算与实验结果,飞片发射过程和最终速度基本一致.而进一步的模拟计算表明,优化的负载结构尺寸和电流波形调节方案下,将有望发射尺寸Φ8.5 mm×1 mm的铝飞片速度超过15 km/s.从模拟设计到实验开展,已初步掌握了基于多支路脉冲功率发生器的超高速飞片发射实验技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号