首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
金培元  巨勇 《化学进展》2007,19(12):1883-1895
甾体化合物是一类生物体中广泛存在并起重要功能的生物分子。其特殊结构使这类化合物具有亲脂性,膜亲合性以及与低密度脂蛋白的特异性结合等性能。利用这些特性设计合成各种药物分子的甾体缀合物,可增加药物分子的脂溶性,提高跨膜渗透能力,在特定组织中的分布以及甾体缀合物自身具有独特的生物活性,对探索新型生物活性分子具有重要意义。本文介绍了近年来在设计合成新型甾体缀合物领域的研究进展,包括甾体药物缀合物、含磷甾体缀合物、作为离子通道和分子载体的缀合物及甾体二聚缀合物等。  相似文献   

2.
胆结石是常见多发病, 但临床缺乏有效的治疗药物. 饱和脂肪酸与胆酸的缀合物能有效预防胆固醇结晶、溶解体内胆固醇结石. 以胆酸或熊去氧胆酸24位羧基为连接位点, 以氨基酸为连接子, 通过酰胺键将载体与具有溶石活性的饱和脂肪酸偶联, 设计合成了一系列新型脂肪酸胆酸缀合物, 其结构经元素分析, IR, 1H NMR和MS光谱分析确证. 通过测定化合物对模型胆汁溶液胆固醇结晶及模型小鼠胆结石的溶解活性, 研究了其体内外溶石活性.  相似文献   

3.
以10-羟基喜树碱为原料,通过两碳边链链接,合成了一系列10-羟基喜树碱氨基酸缀合物和9-硝基-10-羟基喜树碱氨基酸缀合物.采用CCK-8法测试了合成化合物体外对人口腔鳞癌细胞KB、人肝癌细胞HepG2和小鼠结肠癌细胞C26三组细胞株的增殖抑制活性,结果表明部分目标化合物对所选肿瘤细胞株显示了潜在的抑制活性,其中10-羟基喜树碱氨基酸缀合物的体外活性明显优于9-硝基-10-羟基喜树碱氨基酸缀合物的体外活性.  相似文献   

4.
为提高5-氟尿嘧啶抗癌的靶向性,降低其不良反应,合成了5种新型卟啉-5-氟尿嘧啶衍生物及其Mn3+配合物,优化了合成反应条件,探索了目标化合物的分离方法。 通过IR、UV-Vis、1H NMR和ESI-MS对化合物结构和组成进行了确认。 采用四甲基偶氮唑蓝(MTT)比色法,以5-氟尿嘧啶为阳性对照药,测试了卟啉化合物对5种肿瘤细胞的体外抑制活性。 初筛结果显示,化合物D3对人卵巢癌细胞Sk-ov-3有较强的抑制作用。  相似文献   

5.
将N-取代吲哚-3-甲醛和2,4-噻唑烷二酮通过亚甲基键合,再对噻唑烷二酮氮取代,合成了一系列5-(3-吲哚基)亚甲基噻唑烷-2,4-二酮衍生物(e1-e9).采用IR,1H NMR和HRMS对其结构进行了表征;采用MTT法对目标物抑制5种癌细胞增殖活性进行了测试.结果表明,所有目标物对A549、HCT116和PC-9表现出抑制活性,其中吲哚氮被苄基取代的化合物e1和e3对测定的癌细胞增殖抑制活性与5-氟尿嘧啶(5-FU)相近,并且对A549和HCT116表现出中等的抑制活性(IC50<30μM)。  相似文献   

6.
以新药设计原理中的拼合原理为指导,将对苯二酚一侧酚羟基与具有生物活性的氨基酸进行偶联,以期得到活性更好、毒性更低的对苯二酚氨基酸缀合物。 将对苯二酚的一侧酚羟基进行保护得到对苄氧基苯酚,将氨基被保护的氨基酸与其酚羟基进行偶联,去掉保护基后得到8种对苯二酚的氨基酸缀合物。 在对苄氧基苯酚的酚羟基上引入乙酸连接片段,与氨基酸甲酯盐酸盐进行偶联,去掉保护基后得到8种对苯二酚的氨基酸缀合物。 通过IR、1H NMR、13C NMR和ESI-MS等技术手段对所合成的16种氨基酸缀合物进行了结构表征。 对目标产物进行了美白活性研究。 结果表明,化合物HQ-3b、HQ-3c、HQ-4a、HQ-4b、HQ-7c和HQ-8a对酪氨酸酶的抑制作用优于阳性对照物α-熊果苷(IC50=3.60),其中HQ-4b的IC50值低至0.15,有望成为新型化妆品美白剂。  相似文献   

7.
将具有DNA选择性识别的小分子与具有DNA切割活性的小分子缀合,合成对DNA具有定点切割效果的试剂是化学生物学研究领域具有挑战性的研究之一,它为化学、药学和生物学在生命科学中的相互渗透开辟了又一个广阔的空间.设计了具有切割系统和识别系统的定点切割试剂,识别系统由寡聚酰胺组成,含有N-甲基吡咯的寡聚酰胺能够穿透细胞膜与特定的碱基序列高亲和力地结合,并控制基因表达,是一类十分重要的化学物质;切割系统由大环多胺和它的金属配合物构成,大环多胺的金属配合物可作为仿酶催化剂.化合物1的锌配合物对pBR322DNA的切割见下图,此结果为进一步研究DNA特异识别及切割分子提供一个良好的基础.  相似文献   

8.
金培元  卢金荣  赵长琦  巨勇 《有机化学》2012,32(9):1673-1677
利用"点击反应"合成了一系列核苷和单糖的1,2,3-三唑寡聚缀合物7~12,其结构经1H NMR,MS确认.对所合成化合物进行了抑制Hela宫颈癌细胞增殖的体外活性筛选,发现二(脱氧胸苷)乙二醚三唑缀合物11a具有较好的抑制活性,且明显优于其核苷母体3’-叠氮-3’-脱氧胸苷.  相似文献   

9.
吡唑是一类具有优良生物活性的五元杂环化合物.以4-氟苯乙酮和2-呋喃甲醛为原料出发,经Aldol缩合、取代、环化和酰化等反应,合成得到16个未见文献报道的新型哌嗪取代的3-芳基-5-呋喃基-4,5-二氢吡唑酰胺衍生物.采用小鼠巨噬细胞Raw264.7模型和噻唑蓝(MTT)法分别测试了目标化合物的体外抗炎活性和抗肿瘤活性(A549、Hela和SGC7901).研究结果发现,二氢吡唑类化合物能有效抑制炎症因子NO的生成,并对肿瘤细胞株表现出选择性的抑制活性.其中3个化合物与地塞米松活性相当,能有效抑制NO的生成;3个化合物对肿瘤细胞株的体外选择性抑制活性与5-氟尿嘧啶(5-FU)相当,均可做进一步构效关系研究.  相似文献   

10.
具有DNA切割功能的新型多聚酰胺/丝组缀合物   总被引:1,自引:0,他引:1  
为得到具有核酸切割功能的人工核酸酶, 设计合成了一种新型多聚酰胺/丝组缀合物, 并研究了其DNA切割活性. 合成的目标化合物在pH=6.0的BR缓冲溶液中对pBR322 DNA切割活性的初步实验结果表明, 于37 ℃保温6 h后, pBR322 DNA基本上被完全从Form Ⅰ切割为Form Ⅱ, 保温36 h后, pBR322 DNA几乎被切割完全.  相似文献   

11.
The dibutyltin(IV) oxide complex reacts with 5‐fluorouracil‐l‐propanonic or5‐fluorouracil‐1‐acetic acid to give the potential antitumor activity complexes [(5‐fluorouracil)‐1‐(CH2)mCOOSn(Bu‐n)2]4O2[m = 1, (1); m = 2, (2)] which were determined by IR and 1H NMR. The crystal structure determination shows that complex 2 is a dimmer, in which two [(5‐fluorouracil)‐1‐CH2CH2COOSn(Bu‐n)2]2O units are linked by bridging oxygen atom, and the tin atoms adopt distorted trigonal bipyramids via two carbons from dibutyl group and three oxygen atoms from 5‐fluorouracil and bridging oxygen. In vitro test shows complexes 1 and 2 exhibit high cytotoxicity against OVCAR‐3 and PC‐14.  相似文献   

12.
Several N1‐(2‐furanidyl)‐5‐fluorouracil derivatives of α‐hydroxythiophosphonates were synthesized via oxidation by Moffatt's method of N1‐(2‐furanidyl)‐N3‐(hydroxyalkyl)‐5‐fluorouracil, followed by the addition of diethyl thiophosphite. The phosphonate products were obtained by the oxidation of the corresponding thiophosphonates with m‐chloroperoxybenzoic acid. The crystal structure of compound 6a was determined by X‐ray diffraction. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:211–215, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10021  相似文献   

13.
To provide a macromolecular prodrug with recognition ability for hepatoma cells, we synthesized new conjugates of cisplatin (CDDP) and poly(ethylene glycol) (PEG) with galactose residues or antennary galactose units (Gal4A, four branched galactose residues) at the chain terminus, Gal‐PEG‐DA/CDDP or Gal4A‐PEG‐DA/CDDP conjugates. An antennary (branched) structure of Gal4A was designed based on the fact that saccharide clusters with branched structures show highly effective binding with saccharide receptors, a phenomenon known as the ‘cluster effect’. The cytotoxic activity of the conjugates was investigated against HepG2 human hepatoma cells in vitro and compared with a control conjugate without galactose, MeO‐PEG‐DA/CDDP. Gal‐PEG‐DA/CDDP and Gal4A‐PEG‐DA/CDDP conjugates showed lower IC50 values (3.1×10–4 and 2.3×10–4 M , respectively) than the MeO‐PEG‐DA/CDDP conjugate (10.5×10–4 M ). The cytotoxic activities of these conjugates with galactose residues or antennary galactose units were inhibited as a result of the addition of galactose and strongly inhibited by the addition of Gal4A, however the inclusion of a methoxy group (the MeO‐PEG‐DA/CDDP conjugate) did not affect the activity. These results suggest that the Gal4A unit introduced to the conjugate has effective recognition ability against HepG2 human hepatoma cells.  相似文献   

14.
The new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETEFU), was synthesized from 5‐fluorouracil (5‐FU) and 3,6‐endo‐methylene‐1,2,3,6‐tetrahydophthalimidoethanoyl chloride (ETEC). Its homopolymer and copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerization reactions using 2,2‐dimethoxy‐2‐phenylacetophenone (DMP) as the photoinitiator. The synthesized ETEFU and polymers were identified by FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The contents of ETEFU units in poly(ETEFU‐co‐AA) and poly(ETEFU‐co‐VAc) were 20 and 17 mol%, respectively. The number‐average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were 4,600 to 10,700 g mol−1. In vitro cytotoxicities of samples were evaluated with cancer cell lines [mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937)] and a normal cell line [mouse liver cells (AC2F)]. Cytotoxicities of 5‐FU and synthesized samples against the cancer cell lines were ranked as follows: ETEFU > poly(ETEFU) > 5‐FU > poly(ETEFU‐co‐AA) > poly(ETEFU‐co‐VAc). The in vivo antitumor activities of poly(ETEFU) and poly(ETEFU‐co‐AA) against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses except for the activity of poly(ETEFU) at 0.8 mg/kg. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1589–1595, 1999  相似文献   

15.
In solid‐state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5‐fluorouracil (5FU; systematic name: 5‐fluoro‐1,3‐dihydropyrimidine‐2,4‐dione), namely 5‐fluorouracil–5‐bromothiophene‐2‐carboxylic acid (1/1), C5H3BrO2S·C4H3FN2O2, (I), and 5‐fluorouracil–thiophene‐2‐carboxylic acid (1/1), C4H3FN2O2·C5H4O2S, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid–acid R 22(8) homosynthon (O—H…O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 22(8) motif] via a pair of N—H…O hydrogen bonds. The crystal structures are further stabilized by C—H…O interactions in (II) and C—Br…O interactions in (I). In both crystal structures, π–π stacking and C—F…π interactions are also observed.  相似文献   

16.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETFU), was synthesized by the reaction of exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl chloride (ETPC) and 5‐fluorouracil (5‐FU). The homopolymer of ETFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared via photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopy and elemental analysis. The ETFU contents in poly(ETFU‐co‐AA) and poly(ETFU‐co‐VAc) were 26 mol % and 26 mol %, respectively. The number‐average molecular weights of the polymers, as determined by gel permeation chromatography, ranged from 5600 to 17,000. The in vitro cytotoxicities of 5‐FU and the synthesized samples against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines increased in the following order: ETFU > 5‐FU > poly(ETFU‐co‐AA) > poly(ETFU) > poly(ETFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses tested. The inhibitions of the samples for SV40 DNA replication and antiangiogenesis were much greater than the inhibition of the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4272–4281, 2000  相似文献   

17.
Oligodeoxynucleotide conjugates 1 – 15 carrying anchoring groups such as amino, thiol, pyrrole, and carboxy groups were prepared. A post‐synthetic modification protocol was developed. In this method 2′‐deoxy‐O4‐(p‐nitrophenyl)uridine‐3‐phosphoramidite was prepared and incorporated in oligonucleotides. After assembly, the modified nucleoside was made to react with different amines carrying the anchoring groups. At the same time, protecting groups were removed to yield the desired oligonucleotide conjugates. In a second approach, amino, thiol, and carboxylic groups were introduced into the 3′‐end of the oligonucleotides by preparing solid supports loaded with the appropriate amino acids. Oligonucleotide gold conjugates were prepared and their binding properties were examined.  相似文献   

18.
Distamycin‐based tetrapeptide ( 1 ) was covalently tethered to both ends of the central dihydroxyazobenzene moiety at either the 2,2′ or 4,4′ positions. This afforded two isomeric, distamycin–azobenzene–distamycin systems, 2 (para) and 3 (ortho), both of them being photoisomerizable. Illumination of these conjugates in solution at approximately 360 nm induced photoisomerization and the time course of the process was followed by UV/Vis and 1H NMR spectroscopy. The kinetics of the thermal reversion at various temperatures of cis to trans isomers of the conjugates obtained after photoillumination were also examined. This afforded the respective thermal‐activation parameters. Both the molecular architecture and the location of the substituent around the core azobenzene determined the rate and activation‐energy barrier for the cis‐to‐trans back‐isomerization of these conjugates in solution. Duplex–DNA binding of the conjugates and the changes in DNA‐binding efficiency upon photoisomerization was also examined by CD spectroscopy, thermal denaturation studies, and a Hoechst displacement assay. The conjugate 2 showed higher DNA‐binding affinity and a greater change in the DNA‐binding efficiency upon photoisomerization compared with its 2,2′‐disubstituted counterpart. The experimental findings were substantiated by using molecular‐docking studies involving each conjugate with a model duplex d[(GC(AT)10CG)]2 DNA molecule.  相似文献   

19.
A new steroid conjugates have been obtained from bile acids and sterol derivatives using ‘click chemistry’. Intermolecular 1,3‐dipolar cycloaddition of the propargyl ester of bile acids (lithocholic, deoxycholic, and cholic acid) and azide derivatives of sterols (ergosterol and cholesterol) gave a new bile acid? sterol conjugates linked with a 1,2,3‐triazole ring. The structures of all products were confirmed by spectroscopic (1H‐ and 13C‐NMR, and FT‐IR) analyses, mass spectrometry (ESI‐MS), and in silico biological activity evaluation methods (PASS), as well as PM5 semiempirical methods.  相似文献   

20.
The covalently templated bis‐functionalization of C70, employing bis‐malonate 5 tethered by an anti‐disubstituted dibenzo[18]crown‐6 (DB18C6) ether, proceeds with complete regiospecificity and provides two diastereoisomeric pairs of enantiomeric C70 crown ether conjugates, (±)‐ 7a and (±)‐ 7b , featuring a five o'clock bis‐addition pattern that is disfavored in sequential transformations (Scheme 1). The identity of (±)‐ 7a was revealed by X‐ray crystal‐structure analysis (Fig. 6). With bis‐malonate 6 containing a syn‐disubstituted DB18C6 tether, the regioselectivity of the macrocylization via double Bingel cyclopropanation changed completely, affording two constitutionally isomeric C70 crown ether conjugates in a ca. 1 : 1 ratio featuring the twelve ( 16 ) and two o'clock ((±)‐ 15 ) addition patterns, respectively (Scheme 3). The X‐ray crystal‐structure analysis of the twelve o'clock bis‐adduct 16 revealed that a H2O molecule was included in the crown ether cavity (Figs. 7 and 8). Two sequential Bingel macrocyclizations, first with anti‐DB18C6‐tethered ( 5 ) and subsequently with syn‐DB18C6‐tethered ( 6 ) bis‐malonates, provided access to the first fullerene bis‐crown ether conjugates. The two diastereoisomeric pairs of enantiomers (±)‐ 28a and (±)‐ 28b were formed in high yield and with complete regioselectivity (Scheme 9). The cation‐binding properties of all C70 crown‐ether conjugates were determined with the help of ion‐selective electrodes (ISEs). Mono‐crown ether conjugates form stable 1 : 1 complexes with alkali‐metal ions, whereas the tetrakis‐adducts of C70, featuring two covalently attached crown ethers, form stable 1 : 1 and 1 : 2 host‐guest complexes (Table 2). Comparative studies showed that the conformation of the DB18C6 ionophore imposed by the macrocyclic bridging to the fullerene is not particularly favorable for strong association. Reference compound (±)‐ 22 (Scheme 4), in which the DB18C6 moiety is attached to the C70 sphere by a single bridge only and, therefore, possesses higher conformational flexibility, binds K+ and Na+ ions better by factors of 2 and 20, respectively. Electrochemical studies demonstrate that cation complexation at the crown ether site causes significant anodic shifts of the first reduction potential of the appended fullerene (Table 3). In case of the C70 mono‐crown ether conjugates featuring a five o'clock functionalization pattern, addition of 1 equiv. of KPF6 caused an anodic shift of the first reduction wave in the cyclic voltammogram (CV) by 70 to 80 mV, which is the result of the electrostatic effect of the K+ ion bound closely to the fullerene core (Fig. 14). Addition of 2 equiv. of K+ ions to C70 bis‐crown ether conjugates resulted in the observation of only one redox couple, whose potential is anodically shifted by 170 mV with respect to the corresponding wave in the absence of the salt (Fig. 16). The synthesis and characterization of novel tris‐ and tetrakis‐adducts of C70 are reported (Schemes 5 and 6). Attempts to prepare even more highly functionalized derivatives resulted in the formation of novel pentakis‐ and hexakis‐adducts and a single heptakis‐adduct (Scheme 7), which were characterized by 1H‐ and 13C‐NMR spectroscopy (Fig. 10), as well as matrix‐assisted laser‐desorption‐ionization mass spectrometry (MALDI‐TOF‐MS). Based on predictions from density‐functional‐theory (DFT) calculations (Figs. 12 and 13), structures are proposed for the tris‐, tetrakis‐, and pentakis‐adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号