共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Shikii K Seki H Sakamoto S Sei Y Utsumi H Yamaguchi K 《Chemical & pharmaceutical bulletin》2005,53(7):792-795
An extensive analysis of hydrogen bonding of steroid compounds in diluted solution is preformed by pulsed field gradient (PFG) NMR and cold-spray ionization (CSI)-MS, in the solid state by X-ray crystallographic analysis. The formation of hydrogen bond interaction are quantified and discussed. Although X-ray analysis in the crystalline state and CSI-MS measurement in solution suggested that the observed diffusion coefficient D(obs) of the steroid compounds may vary in accordance with the number of hydrogen bonds, the actual observed D(obs) value determined from the diffusion studies diminished constantly without correlation on the decreasing numbers of hydrogen bonds. Comparison of two different calibration profiles of calculated molecular volume (V(cal)) vs. D(obs), which are obtained from compounds possessing no hydrogen bonding and the steroid compounds, formation of a chain structure (cluster) based on intermolecular hydrogen bonding of the steroid compounds is unambiguously confirmed. 相似文献
3.
The thermal frequency response and pulsed field gradient NMR methods are applied in a comparative study of water diffusion in zeolite NaX under non-equilibrium and equilibrium conditions. The obtained results are found to be in satisfactory agreement with each other, indicating that by applying the thermal frequency response method, complications due to uncontrolled water adsorption at the chamber walls inherent in conventional frequency response measurements may be circumvented. 相似文献
4.
《Journal of Energy Chemistry》2016,(3)
ZSM-48 zeolites with various Si/Al ratios were hydrothermally synthesized in the H_2N(CH_2)_6NH_2(HDA)-containing media. The obtained samples were highly crystallized with minor mixed phases as evidenced by X-ray powder diffraction(XRD). The alkaline treated ZSM-48 zeolites maintained its structure under different concentrations of Na OH aqueous solution. Micropores remained unchanged while mesopores with wide pore size distribution formed after the alkaline treatment. The surface area increased from 228 to 288 m~2/g. The Br?nsted acid sites had little alteration while an obvious increase of Lewis acid sites was observed. The hydroisomerization of hexadecane was performed as the model reaction to test the effects of the alkali treatment. The conversion of hexadecane had almost no change, which was attributed to the preservation of the Br?nsted acid sites. While high selectivity to iso-hexadecane with an improved iso to normal ratio of alkanes was due to the mesopore formation and improved diffusivity. 相似文献
5.
I. Zupan
i
G. Lahajnar R. Blinc D. H. Reneker A. Peterlin 《Journal of Polymer Science.Polymer Physics》1978,16(8):1399-1407
The diffusion coefficient of butane in linear polyethylene at room temperature as a function of the vapor pressure of butane was measured by the spin-echo method with a pulsed magnetic field gradient. For the Special morphology of randomly oriented stacks of parallel lamellas the detour factor is 1/3. As long as the blocking factor and migration through the lamellas can be neglected, the local diffusion coefficient Da of the small molecules through the amorphous layers in the direction parallel to the lamellas is three times the apparent diffusion coefficient D derived from the decay of the amplitude of the spin echo under the assumption of an infinitely extended homogeneous medium. The diffusion coefficient and the spin–spin relaxation time both increase exponentially with increasing pressure, i.e., butane concentration in the polymer, while the spin-lattice relaxation time is pressure independent and seems to be determined by interaction with the amorphous polyethylene matrix. 相似文献
6.
Augustyniak R Ferrage F Damblon C Bodenhausen G Pelupessy P 《Chemical communications (Cambridge, England)》2012,48(43):5307-5309
A novel NMR approach allows one to efficiently determine translational diffusion coefficients of macromolecules in solution. This method for Signal Optimization with Recovery in Diffusion Delays (SORDID) monitors transport occurring during the recovery times between consecutive scans so that the duration of the measurements can be reduced approximately by a factor two. 相似文献
7.
Wide-line NMR has been used in an investigation of noncrystalline (amorphous) regions in oriented semicrystalline polymers. Nylon 6 was chosen as a model material. The tie-chain length distribution function, the fraction of tie chains in the total number of chains in the crystallite cross section, and the relative number of taut tie chains have been determined. The data on the tie-chain length distribution are used in discussing specific features of vitrification of the amorphous regions in oriented polymers and in prediction macroscopic mechanical properties. 相似文献
8.
[structure: see text] NMR diffusion measurements were used to probe the role of water molecules in a resorcinarene capsule in a CDCl(3) solution. It was found that the water/resorcinarene ratio affects both the chemical shift and the diffusion coefficient of the water molecules. From the NMR diffusion measurements we could conclude that the major species in the chloroform solution is the hexamer having eight water molecules that are in fast exchange, on the NMR time scale, with the bulk water. 相似文献
9.
Various kinds of aluminum species in dealuminated mordenite were investigated in detail, and the quadrupole coupling constants
(QCCs) for aluminum atoms associated with these species were obtained by means of the newly introduced1H/27 AI TRAPWR method as well as27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR). QCC values of 11.3, 15.3, 13.3 and (14.0± 0.6) MHz were determined
from the TRAPDOR profiles for Lewis acid sites, Bronsted acid sites (SiOHAl) and two kinds of non-framework aluminum species
Al(OH)
n
, respectively. The source of the “invisible Al” is discussed on the basis of the NMR experimental results. 相似文献
10.
The diffusion of o-, m-, and p-xylene in a FAU zeolite at 300-900 K was investigated using molecular dynamics simulations. Calculated self-diffusion coefficients of xylene isomers showed that the mobility of p-xylene was the fastest, m-xylene the second fastest, and o-xylene the slowest in the FAU zeolite at the same temperature. The diffusion activation energy of o-xylene, m-xylene and p-xylene was, respectively, determined to be 9.04, 7.45 and 6.44 kJ mol(-1) within the temperature range of 400 to 900 K, while to be 14.12, 13.59 and 15.47 kJ mol(-1) within the temperature range of 300 to 400 K. Xylene density profiles and orientational analysis suggested that this can be attributed to the xylene molecules that diffuse in the FAU zeolite by two different mechanisms at high and low temperatures. The behavior of motion for xylene in the FAU zeolite exhibits a "fluid-like" mode at high temperatures and exhibits a "jump-like" mode at low temperatures. 相似文献
11.
Kinetic Monte Carlo (KMC) simulations are carried out to directly study diffusion of benzene through thin (37-100 nm) NaX zeolite membranes under a gradient in chemical potential. Nonlinearities in adsorbate loading near the membrane boundaries are shown to arise from the difference in adsorbate density between the zeolite and adjacent fluid phase. Direct extraction of the transport diffusivity from gradient KMC simulations enables testing of the Darken approximation. This rigorous approach reveals limitations of the Darken approximation and, for the first time, the potentially complex nonunique functionality and multiplicity of the transport diffusivity for strongly interacting adsorbates. In the companion paper we explore these nonlinear interfacial effects in the context of permeation through both single-crystal and polycrystalline membranes. 相似文献
12.
The distribution of fluoride ions has been studied in the pure silica IFR, ITH, IWR, STF and STT zeolite structures using computational techniques. The interactions between the F- and SDA+ ions (where SDA is the organic structure directing agent) are able to explain the F- cage occupation found experimentally. While studying the short-range fluoride-framework interactions, a relationship was found between the Si atoms forming the pentacoordinated units and the lowest F- defect energies, which rationalizes the experimental Si-F bonding in terms of energetic stability. It is proposed that the F- location is governed by a two step process. In a first stage, the electrostatic long-range forces and, especially, the interactions between the F- and the SDA+ ions, decide which cage will be filled with F-; in a second stage, once the F- cage location is decided, the F- forms a covalent bond with a Si site to form an energetically stable pentacoordinated unit [SiO4/2F]-. 相似文献
13.
The molecular sizes of higher aggregates of dimethylcuprates (Me(2)CuLi (1), 1.LiI, and 1.LiCN) and bis[(trimethylsilyl)methyl]cuprates ((Me(3)SiCH(2))(2)CuLi (2), 2.LiI, and 2.LiCN) in diethyl ether (Et(2)O) were determined by pulsed field gradient (PFG) NMR diffusion measurements. The obtained diffusion coefficients show molecular sizes larger than those of dimers for all systems. In these higher aggregates, steric hindrance and dilution reduce aggregation, whereas LiCN increases it. The molecular sizes were first determined by a spherical model-free approach and then refined by structure models of higher aggregates. These models were built by a combination of diffusion results, known NMR studies, and crystal structures. Thus, polymeric chains with homodimeric cores connected by solvent (salt-free case) or solvent and salt (salt-containing case) were proposed. These models were confirmed by a solvation analysis, whereby the number of solvent molecules attached to the aggregates was determined by a weighted average study. On the basis of these structure models, the number of repetition units (length index) was determined to be between 1.3 and 5.2, with the general trends in aggregation independent of the structure model used. A combined analysis of the determined length indices and known relative reactivities led for the first time to a correlation between higher aggregation and reactivity of dimethylcuprates in the addition reaction with enones: aggregates higher than dimers reduce the reactivity. Consequently, despite their consistent homodimeric core structures, for the first time the remaining reactivity differences between iodo- and cyanodimethylcuprates in Et(2)O are explained by the difference in their aggregation. 相似文献
14.
Majolino D Corsaro C Crupi V Venuti V Wanderlingh U 《The journal of physical chemistry. B》2008,112(13):3927-3930
By pulsed field gradient nuclear magnetic resonance measurements, we investigated the translational diffusion of water confined in the 200 A diameter pores of a sol-gel silica glass. The experiments, performed as a function of the hydration level, showed an enhancement of the self-diffusion coefficient when the water content corresponds to one or fewer monolayers. An explanation for this occurrence has been given in terms of a two-phase process involving a fast molecular exchange between the liquid and the vapor phase. Moreover, in partially filled pores, the surface water diffusion coefficient was measured, and was 4 times lower than the diffusion of liquid confined water in saturated spaces. 相似文献
15.
16.
Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales 总被引:5,自引:0,他引:5
Shvartzman-Cohen R Nativ-Roth E Baskaran E Levi-Kalisman Y Szleifer I Yerushalmi-Rozen R 《Journal of the American Chemical Society》2004,126(45):14850-14857
Dimensionality is known to play a key role in the solution behavior of nano- and mesoparticles. In particular, the shape and the range of the attractive van der Waals interparticle potential are determined by the number of microscopic versus mesoscopic dimensions. For single-walled nanotubes (SWNTs), where two of the dimensions are nanoscopic and one is mesoscopic, the intertube attraction is relatively short ranged, albeit very steep. The very large attraction (compared to the thermal energy, K(b)T) among long SWNTs leads to aggregation at different levels and constitutes a major barrier for manipulation and utilization of SWNTs. This study demonstrates that it is possible to shape the intertube potential by decorating SWNTs with end-tethered polymers. In good solvent conditions for the polymers, entropic repulsion among the tethered chains generates a free energy barrier that prevents SWNTs from approaching the attractive part of the intertube potential. Consequentially, stable dispersions of individual, well separated SWNTs can be prepared. Investigation of different chain lengths and tethering densities of the polymers as well as the interparticle potentials for nanometric versus mesoscopic particles suggests that polymer-induced steric stabilization provides a generic method for separation of SWNTs from mixtures of colloidal species, as demonstrated experimentally. 相似文献
17.
18.
J. W. Begley 《Journal of polymer science. Part A, Polymer chemistry》1966,4(2):319-336
The role of monomer diffusion in the polymerization of propylene by organometallic catalysis was examined by use of mathematical models which couple the rate of diffusion through the polymer film surrounding the catalyst with the rate of surface reaction. An approximate form of a second-order, integrated rate equation was used to describe the disappearance of active sites on the surface. For the most conservative model conceivable, it was estimated that the particle size would have to be 10–100 times the size for the catalysts presently in use before diffusion time would be significant. The size of the catalysts was determined by photomicrographs and nitrogen adsorption surface areas. The surface areas for three different catalysts were 7, 20–21 and 35 m.2/g., respectively. The kinetic model without the diffusion term was used satisfactorily to correlate productivity data. The characteristic decline in reaction rate was examined in terms of the decay of active sites on the surface of the catalyst. The rate of decay was determined to be second order with respect to the site concentration. The kinetic model indicates that the total polymerization time for a specified productivity is the sum of the monomer diffusion time and the surface reaction time. The model derived by use of an approximate second-order decay function is unique because of the additivity of diffusion and reaction times, which is not the case when the second-order function is used rigorously. 相似文献
19.
Self-diffusion measurements in microemulsion systems composed of a naturally occurring soybean lecithin mixture, an aqueous phase, either water or a 1% aqueous PDADMAC solution, and isooctane were accomplished by pulsed field gradient (PFG) 1H NMR spectroscopy at oil dilution lines of low and intermediate water/lecithin ratios. The concentration-dependent diffusion data reveal water-in-oil (W/O) reverse micellar aggregates with dimensions on the nanometer scale being slightly smaller at low water content. With increasing micellar volume fractions, both hydrodynamic as well as direct interactions between particles significantly slow aggregate diffusion. The surfactant mean square displacements (msd's) in dilute and concentrated polymer-free systems studied as a function of diffusion time (20-1000 ms) are characterized by a crossover from Gaussian diffusion, due to slow aggregate motion, to anomalously enhanced diffusion, due to fast surface-bulk surfactant exchange at intermediate times revealing weak, barrier-controlled adsorption behavior. Upon addition of the polycation PDADMAC, the diffusion characteristics change to exclusively superdiffusive behavior with surfactant msd scaling with time as t(3/2) over the entire time range studied. This is caused by surfactant molecules performing Levy walks along the surface of reverse micelles mediated by the dilute bulk. The bulk-mediated surface diffusion is a consequence of the diffusion-controlled micelle-bulk exchange dynamics induced by interactions of PDADMAC with surfactant headgroups. 相似文献
20.
Hayley A. Every Michael A. Hickner James E. McGrath Thomas A. Zawodzinski Jr. 《Journal of membrane science》2005,250(1-2):183-188
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations. 相似文献