首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Steaming of NH4Y zeolite at 723 K and 873 K is accompanied by the formation of extra‐framework amorphous aluminosilicate and silica gel in addition to earlier observed extra‐framework aluminum species. Their occurrence is directly associated with the formation of mesopores. Bulk (intracrystalline) mesopores occur inside the crystallite nuclei and surface (intercrystalline) mesopores are located nearby the crystallite surface. Corrosion of the zeolite framework results in a loss of crystallinity and, consequently, decreased catalytic activity of the USY catalysts synthesized. Analysis of the reasons of mesopore formation may help to reduce these disadvantages.  相似文献   

2.
Mesoporous zeolite silicalite-1 and Al-ZSM-5 with intracrystalline mesopores were synthesized with polyelectrolyte-surfactant complex as the template. Complex colloids were first formed by self-assembly of the anionic polymer poly(acrylic acid) (PAA) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) in basic solution. During the synthesis procedure, upon the addition of the silica source, microporous template (tetrapropylammonium hydroxide), and NaCl, these PAA/CTA complex colloids underwent dissociation and gave rise to the formation of hollow silica spheres with mesoporous shells templated by CTAB micelles and PAA domains as the core. Under hydrothermal treatment, the hollow silica spheres gradually merged together to form larger particles with the PAA domains embedded as the space occupant, which acted as a template for intracrystalline mesopores during the crystallization of the zeolite framework. Amphiphilic organosilane was used to enhance the connection between the PAA domain and the silica phase during the synthesis. After calcination, single crystal-like zeolite particles with intracrystalline mesopores of about 5-20 nm were obtained, as characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N(2) adsorption measurements. With the addition of an aluminum source in the synthesis, mesoporous zeolite Al-ZSM-5 with intracrystalline mesopores was also synthesized, and enhanced catalytic property was observed with mesoporous Al-ZSM-5 in acetalization of cyclohexanone with methanol.  相似文献   

3.
TEM stereo-imaging of mesoporous zeolite single crystals   总被引:1,自引:0,他引:1  
Mesoporous zeolite single crystals with intracrystalline mesopores and metal oxide particles located in the zeolite mesopore are characterised by direct TEM stereo-imaging.  相似文献   

4.
采用不同类型的有机硅烷化SiO2作为基本合成单元, 制备了具有晶内中孔的A型沸石。考察了反应碱度、Si/Al比、晶化时间等合成条件对产品的影响。结果表明, 甲氨基丙基三甲氧基硅烷是合成中孔A型沸石的最佳硅烷化试剂;硅烷化试剂的应用, 使中孔沸石晶化过程可以通过“键阻断原理”有效控制;沸石的中孔尺寸可以通过不同类型的有机硅烷化试剂进行调控; 一定范围内, 其外比表面积、中孔体积随SiO2表面硅烷化度的增加而增加。通过沸石晶化过程中的“键阻断”, 可以制备具有晶内中孔的A型沸石。  相似文献   

5.
采用不同类型的有机硅烷化SiO2作为基本合成单元,制备了具有晶内中孔的A型沸石。考察了反应碱度、Si/Al比、晶化时间等合成条件对产品的影响。结果表明,苯胺基丙基三甲氧基硅烷是合成中孔A型沸石的最佳硅烷化试剂;硅烷化试剂的应用,使中孔沸石晶化过程可以通过"键阻断原理"有效控制;沸石的中孔尺寸可以通过不同类型的有机硅烷化试剂进行调控;一定范围内,其外比表面积、中孔体积随SiO2表面硅烷化度的增加而增加。通过沸石晶化过程中的"键阻断",可以制备具有晶内中孔的A型沸石。  相似文献   

6.
Zeolites of type NaY synthesised by use of seed‐solution and zeolite X‐seeds to initialise the crystallisation were compared. A different homogeneity of the internal framework structure related to the Si/Al ratio was expected. Thus, the formation of closed bulk mesopores should be influenced during treatment of NH4NaY modification for 7 hours at 450 °C and 600 °C, respectively, in the water steam of 1 bar. Occurrence of different mesopores was actually observed in obtained ultra‐stable USY zeolites using nitrogen adsorption. Whereas USY prepared by use of seed‐solution contains only open mesopores at the crystal surface, the X‐seed synthesised material contains open and closed mesopores at the surface and in the nuclei of samples, respectively.  相似文献   

7.
多产低碳烯烃及柴油用分子筛的设计   总被引:1,自引:0,他引:1  
目前,催化裂化的原料大多是蜡油和减压渣油的混合油,或全部的常压渣油 .其相对分子量范围很宽,组成十分复杂 .为了分别对待大小不同的分子和不同碳氢比化合物的裂化性能,现代催化裂化催化剂应具有梯度孔结构与梯度酸中心的优化结构配置 .而目前催化裂化的主导分子筛 USY二次孔含量还不能满足原料油日趋变重的需求,并且滞留在分子筛孔 /笼内的非骨架铝限制了其选择性的进一步提高,因此有必要对其结构进一步修饰 .  本研究在 USY基础上合成新的催化裂化多产低碳烯烃和柴油用分子筛催化剂 .新型 USY基分子筛从晶体结构、孔容及孔…  相似文献   

8.
Novel and innovative hierarchical analcime zeolites were prepared by adding a gemini surfactant which acted as a dual‐functional template. Through a one‐step hydrothermal process, a hierarchical analcime zeolite with abundant intracrystalline mesopores was synthesized. Powder X‐ray diffraction and N2 adsorption–desorption data show that the mesoporous composites possess both a quite a number of mesopores and analcime structure. The results suggest that the dual‐functional template can be effective in the synthesis of hierarchical analcime zeolites.  相似文献   

9.
Sorption and desorption in zeolites (molecular sieves) have to be considered as complex processes, involving simultaneous diffusion in zeolite crystals, mass transfer in the intercrystalline void of a pellet, and heat transfer between the zeolitic sorbent and its surroundings. The kinetics of sorption and desorption, respectively, of n-C4H10 in zeolite X and of CO2 in zeolite A have been investigated: only the initial rates of uptake or release of the sorbet are controlled by mass transfer alone whereas ultimately they also depend on the rate of heat transfer from the sorbent to its surroundings or vice versa. Diffusivities of the sorbate in the zeolite crystals can be obtained from the kinetics of mass transfer, provided the resistance due to viscous or Knudsen flow between the crystals of the zeolitic sorbent can be eliminated. A sample consisting of a monolayer of single crystals had to be used for this purpose in the n-butane/zeolite X system; the intracrystalline diffusivity obtained in this way is not in conflict with data obtained by NMR spectroscopy. The intracrystalline diffusivities obtained in this way—taking into account the coupling of several processes during sorption — are higher than values reported in the literature.  相似文献   

10.
介孔沸石材料   总被引:5,自引:0,他引:5  
介孔沸石材料是含有丰富介孔的结晶沸石,不仅保留了沸石材料优良的酸性和水热稳定性,而且由于介孔的引入改善了其对大分子的吸附和扩散性能,在催化领域特别是涉及大分子的催化反应中是极有应用前景的材料。本文综述了介孔沸石材料的制备方法并进行了比较分析,概述了近年来介孔沸石材料在不同催化反应中的应用,探讨了介孔沸石材料今后的研究方向。  相似文献   

11.
The effect of chain length and branching of paraffins (from C6 to C12) on adsorption and diffusion in zeolites NaY, Pt/NaY, HY and USY has been investigated using the chromatographic method at 275–400°C. The Henry constants of the paraffins increase exponentially with the chain length (with a factor two per extra carbon group), the heats of adsorption increase with circa 7 kJ/mol per extra carbon group. Multicomponent sorption experiments reveal that longer chains are adsorbed preferentially over shorter chains, even at higher loadings. The multicomponent adsorption can be reasonably well described by an extended Langmuir adsorption isotherm, in which the stronger adsorption of the longer chains is reflected by their higher Henry constants. The molecular shape and zeolite type within this FAU group has only a small influence on the adsorption properties. Mass transfer in the pellets as used in catalytic conditions seems to be limited by macropore diffusion, rather than by micropore diffusion, which cannot be measured with the chromatographic method. Increasing the Si/Al-ratio of the zeolite reduces the adsorption capacity, but does not influence the relative adsorption properties.  相似文献   

12.
Diffusion of methane and argon mixtures through the silicalite single-crystal membrane is studied using the dual-control volume-grand canonical molecular dynamics method to understand how surface resistances alter selectivity and permeance. Comparison of results from intracrystalline transport and entrance simulations for binary mixtures of CH4 and Ar shows that the selectivity of silicalite membranes toward Ar is enhanced in the presence of the surface resistances. In both cases, however, diffusion of faster Ar molecules was inhibited by slower diffusing CH4 molecules, whereas diffusion of the latter remained unaffected. This behavior was explained by the difference between the magnitudes of surface resistances for two molecules, which is much smaller for Ar because of its smaller permeant-crystal interaction size. We find that selectivity of the membrane at the surface depends strongly on total feed pressure and temperature, whereas this dependence is weak for intracrystalline diffusion. Furthermore, we show that the selectivity at the surface diminishes with crystal thickness until a certain thickness is reached, whereas the intracrystalline selectivity remains constant with increasing thickness. Finally, a study of diffusion of C2H6 and CF4 mixtures shows that the diatomic ethane molecules diffuse faster inside the zeolite channels, but their desorption is hindered to a larger extent than that of a spherical molecule with larger diameter and lower heat of adsorption. This observation indicates that the difference in molecular geometry is also a significant factor to explain the exit effect.  相似文献   

13.
Probing the mesopore architecture in mesoporous zeolites is of importance for large scale applications of the materials. In this work, the adsorption and diffusion of mesitylene with larger molecule size in mesoporous ZSM-5 zeolites were carried out, in order to acquaint the availability and interconnectivity of mesopores in zeolite crystals. The comparisons of the shape of adsorption isotherms and the mesopore volume calculated from mesitylene and N2 adsorption in mesoporous ZSM-5 zeolites with different mesoporosities can be used to discriminate two cases of mesopores: accessible mesopores connected to external surface of the zeolite crystals and non-accessible meso-voids that are occluded in the microporous matrix. Furthermore, the effective diffusivity and activation energy of mesitylene in mesoporous ZSM-5 extracted from ZLC desorption curves as a function of mesopore volume calculated from mesitylene adsorption reveal the enhancement of mesopore interconnectivity to molecule diffusion in zeolite crystals.  相似文献   

14.
Fluorescence methodologies have been utilized to examine micropolarity, intramolecular motion, and singlet quenching in the intraparticle void volume of zeolites X, Y, and ultrastable Y (USY) interfaced with bathing polar solvents. Micropolarity was assessed from the 3-to-1 band ratio (III/I) of the fluorescence spectrum of pyrene (PY) and from lambda(max) of the fluorescence spectrum of 1-pyrenecarboxaldehyde (1-PCA). In zeolites bathed in anhydrous solvents, both PY and 1-PCA reported increased micropolarity according to the trend USY < bulk solvent < NaX approximately NaY. For example, in NaY (USY), III/I ranged from 0.44 (0.98) in acetonitrile to 0.52 (1.34) in n-hexanol, compared to 0.60, 1.06, and 1.62 in bulk acetonitrile (ACN), n-hexanol, and n-hexane, respectively. The polarity studies reveal that the ionic nature of NaX and NaY and the hydrophobic nature of USY strongly influence the microenvironment of the arene despite the presence of desorbing polar solvents. Constraints on intramolecular motion were examined in polar-solvated NaX through measurements of the fluorescence lifetime of trans-stilbene. Lifetimes ranged from 113 ps in NaX-ACN to 671 ps in NaX-tert-butyl alcohol. The latter value is close to that observed in bulk glycerol. Diffusion-controlled quenching of PY fluorescence by O2 and a series of nitrocompounds dissolved in solvents bathing the zeolite was examined by a time-resolved approach. For all of the quenchers and solvents studied, quenching was more efficient in USY compared to NaX and NaY. Interestingly, the rate of O2 quenching in USY-MeOH was only 12 times lower than that in bulk MeOH. In contrast, in NaY-MeOH and NaX-MeOH the rate of O2 quenching was too low to be measured. The rate constants in these systems were therefore taken as the rate constant for diffusion-controlled quenching of trapped electrons measured previously. These values were 600 times and 10(5) times lower than the rate of fluorescence quenching in USY-MeOH, respectively. The O2 quenching studies show that dispersive interactions of polar solvents with the cavity walls dominate in USY because of the hydrophobic nature of the USY surface. In NaX and NaY, stronger ion-dipole and hydrogen bonding interactions dominate and lead to more restricted access and lowered quenching efficiency. Perrin (or static) quenching of pyrene fluorescence was also examined to infer the concentration of nitromethane (NM) in the void volume of NaX and NaY bathed in MeOH, ACN, or H2O. The results indicate that access of NM to the interior of NaY is more inhibited in ACN compared to MeOH, presumably because of the higher dipole moment of ACN and its resulting stronger association with the zeolite surface. At similar levels of static quenching equated to a similar NM concentration in the zeolite, dynamic quenching by NM varied by no more than a factor of 2 in all systems compared. This implies that the rate of NM diffusion in solvated zeolite interiors is similar regardless of zeolite or solvent properties. In contrast to O2 diffusion in zeolites, NM exhibits a high dipole moment and can therefore migrate through polar-solvated zeolite apertures by adsorbing to the zeolite. Overall, the results of this study show a close relationship between the behavior of probes and quenchers in the confines of polar-solvated zeolite interiors and the chemical properties of the zeolite. Differences between weakly and strongly interacting surfaces are revealed clearly in the results.  相似文献   

15.
In this work, adsorption and diffusion of trichloroethylene (TCE) and tetrachloroethylene (PCE) in ZSM-5-type zeolites were studied using molecular simulation methods. Grand canonical Monte Carlo technique was to calculate adsorption isotherms and heats of vaporization of TCE and PCE in zeolite. The results demonstrated that the Pnma-P2(1)2(1)2(1) symmetry transition of the zeolite framework has no significant effect on the TCE adsorption capacity of the silicalite, but it causes an increase of the PCE adsorption capacity. Simulations using a silicalite framework with Pnma symmetry showed that the adsorption capacity of the silicalite was limited to five molecules per unit cell. However, when a framework with P2(1)2(1)2(1) symmetry was used in the simulations, the capacity reached to eight molecules per unit cell, which is the actual adsorption capacity. To calculate intracrystalline diffusion coefficients of these compounds, molecular dynamics simulations were performed at different temperatures and loadings. The results show that the zeolite symmetry has a significant impact on diffusion coefficients of the sorbate molecules.  相似文献   

16.
The rational design of zeolite‐based catalysts calls for flexible tailoring of porosity and acidity beyond micropore dimension. To date, dealumination has been applied extensively as an industrial technology for the tailoring of zeolite in micropore dimension, whereas desilication has separately shown its potentials in the creation of mesoporosities. The free coupling of dealumination with desilication will bridge the tailoring at micro/mesopore dimensions; however, such coupling has been prevailingly confirmed as an impossible mission. In this work, a consecutive dealumination–desilication process enables the introduction of uniform intracrystalline mesopores (4–6 nm) into the microporous Al‐rich zeolites. The decisive impacts of steaming step have been firstly discovered. These findings revitalize the functions of dealumination in porosity tailoring, and stimulate the pursuit of new methods for the tailoring of industrially relevant Al‐rich zeolites.  相似文献   

17.
The net mass transfer resistance for gas molecules permeating through zeolite membranes includes contributions from intracrystalline diffusion and contributions from interfacial effects. These interfacial effects can arise either from gas-zeolite interfaces or from interfaces that exist within zeolite crystals due to grain boundaries. We present the first atomically detailed simulations that examine interfacial mass transfer resistance due to internal grain boundaries in zeolites that are relevant for membrane applications. Our calculations examine twinned silicalite crystals in crystallographic configurations that have been identified in previous experiments. We used the dual control volume grand canonical molecular dynamics method to simulate the permeance of CH(4) and CF(4) through thin twinned silicalite crystals. The magnitudes of the grain boundary resistances are quite substantial, at least for the thin crystals that are accessible in our simulations.  相似文献   

18.
The sticking coefficient, i.e., the probability that, on hitting the surface of a nanoporous particle (zeolite), a molecule shall be able to enter the intracrystalline space, is a key quantity for the application of such materials in heterogeneous catalysis and molecular sieving. On the basis of pulsed field gradient NMR diffusion measurements and molecular dynamics simulations, typical values of this probability are found to be close to one. They exceed previous estimates on the basis of IR uptake measurements by many orders of magnitude.  相似文献   

19.
The diffusion mechanisms within zeolite catalysts, such as resistance to diffusion at pore mouths, configurational diffusion, adsorption-controlled diffusion, influence of co-existing molecules and pore blocking, were overviewed. Two kinds of diffusivities, the intracrystalline diffusivity and the effective diffusivity, were discussed separately to clarify the diffusion mechanism.  相似文献   

20.
采用草酸脱铝对USY分子筛进行了改性,考察了草酸加入量对USY相对结晶度(CRX)、硅铝比(nS iO2/nA l2O3)、比表面积、孔结构及加氢裂化性能的影响,并采用程序升温脱附和原位红外光谱技术对改性USY型分子筛的酸性进行了表征。结果表明,随草酸加入量的增加,在脱除USY中非骨架铝的同时,骨架铝被脱除的量也逐渐增多,致使USY的相对结晶度先提高而后降低、硅铝比提高、酸强度和酸量降低。正癸烷的加氢裂化结果表明,当草酸的加入质量比为0.2时,正癸烷的转化率和一次裂化产物的选择性分别为68.5%和80.1%。草酸改性USY具有高催化活性是因为该分子筛具有空旷的介孔结构和较多的可接近的酸性位;一次裂化产物选择性高是因为空旷的介孔结构使裂化产物快速离开酸性位而避免了二次裂化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号