首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relaxation of flux profile and magnetisation due to non-linear vortex diffusion in a superconducting slab settled in a parallel-to-the-surface DC and superimposed weak AC magnetic fields is studied for several kinds of the non-linear vortex diffusivity, corresponding to different possible shapes of the current–voltage characteristics of the superconductor. The evolution of the dynamic vortex response on applied weak AC field due to flux relaxation process is studied and relaxation characteristics of the AC magnetic susceptibility are calculated. The flux creep rate and magnetisation decay are shown to be enhanced significantly in the case of strongly non-linear regime of vortex diffusion if even rather weak AC magnetic field is applied. The possibility of ‘dynamical melting' of the vortex lattice occurring at rather high levels of the induced current density (j>jc) is also demonstrated.  相似文献   

2.
In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.  相似文献   

3.
本文报道超声波在磁性液体中的传播特性,首先研究了磁化状态建立与消失的弛豫过程,弛豫时间约20min,为了保证平衡状态下进行测量,所有数据均为附加磁场60min后进行的测量,然后在f=4HMz下,测量了φ=0,π/2的声速与磁场的关系,声速与磁性液体中磁性颗粒浓度的关系,对有关理论进行了解释。 关键词:  相似文献   

4.
《Current Applied Physics》2014,14(1):122-126
The molecular dynamics of the homogeneously aligned nematic liquid crystal mixture E7 subject to a magnetic field has been studied. The dielectric spectra study has revealed a low bias magnetic field effect on the evolution of dielectric relaxation spectra occurred at lower (∼kHz) (δ-relaxation) and higher (∼MHz) (α-relaxation) frequency regions. The complex electric modulus, which converted from experimental dielectric spectra, has been analyzed with theoretical model of Debye relaxation. The obtained fitting parameters of relaxation time and strength of dielectric components are shown to vary systematically with the strength of applied magnetic field. A microscopic molecular dynamic model has been proposed to describe the two-step variation of E7 molecular under the bias magnetic field. The results provide implication for magneto-modulation of liquid crystal molecular dynamics under the bias magnetic field.  相似文献   

5.
A kinetic model is proposed to describe the low-frequency magnetodynamics of antiferromagnetic nanoparticles suspended in a fluid. Because of their small size, apart from an anisotropic magnetic susceptibility typical of antiferromagnets, these particles also have a constant magnetic moment caused by sublattice decompensation. An orientational crossover takes place in such a nanosuspension (colloid) when magnetized by a constant field: the axes of easy particle magnetization that were initially aligned along the field become oriented perpendicularly. This effect changes significantly the characteristics of the system’s magnetic response: the dynamic susceptibility spectrum and the relaxation time in a pulsed field.  相似文献   

6.
Inelastic spin relaxation and spin splitting epsilon(s) in lateral quantum dots are studied in the regime of strong in-plane magnetic field. Because of both the g-factor energy dependence and spin-orbit coupling, epsilon(s) demonstrates a substantial nonlinear magnetic field dependence similar to that observed by Hanson et al. [Phys. Rev. Lett. 91, 196802 (2003)]. It also varies with the in-plane orientation of the magnetic field due to crystalline anisotropy of the spin-orbit coupling. The spin relaxation rate is also anisotropic, the anisotropy increasing with the field. When the magnetic length is less than the "thickness" of the GaAs dot, the relaxation can be an order of magnitude faster for B ||[100] than for B || [110].  相似文献   

7.
The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.  相似文献   

8.
Transferring from laboratory frame to off-resonance rotating frame for the (1)H spin can compensate the relaxivity loss for paramagnetic agents at the magnetic field strength higher than 3 Tesla and enhance water relaxation rate constant significantly. A comprehensive theory for calculating the relaxation rate constants in the off-resonance rotating frame is described. This theory considers the contributions from both inner shell and outer shell water. The derived relaxation rate constants and relaxation enhancement efficiency as a function of the magnetic field strength and the effective field parameters are directly correlated to the structures, dynamics and environments of paramagnetic agents. To validate the theoretical predictions, we have measured the relaxation enhancement efficiency for a series of macromolecule conjugated gadolinium chelates at 9.4 Tesla. The experimental results confirmed the theoretical predictions. The theory also predicts the relaxation enhancement for T(2)-type paramagnetic agents at high magnetic fields. Promising fields of applications include situations where T(1)- or T(2)-type paramagnetic agents are used for labeling molecular/cellular events.  相似文献   

9.
The effect of a magnetic field on the processes of relaxation of the defect structure relaxation in a triglycine sulfate (TGS) ferroelectric (nonmagnetic) crystal has been observed for the first time. The atomic-force microscopy study has shown that the application of a static weak magnetic field (2 T, 20 min) significantly changes the size distribution of defect nanoclusters characteristic of TGS. Previously known macroscopic aftereffects of the magnetic field in TGS (slow relaxation of the dielectric susceptibility, symmetrization of P–E dielectric hysteresis loops, etc.) can be explained by the redistribution of pinning centers of domain walls caused by the magnetically induced reconfiguration of the defect structure.  相似文献   

10.
We investigate the n = 0 Landau level (LL) in monolayer graphene with high magnetic field. We find that the energy gap is opened in the n = 0 LL by the magnetic-field-dependent lattice relaxation originating from the interactions between the electrons (holes) and longitudinal-deformation-acoustic phonon. Both the linear and square-foot dependence of the energy gap on the magnetic field are obtained depending on the choice of the Debye cut-off wave number for the acoustic phonon. The relations of the Huang-Rhys parameter (lattice relaxation strength) and the transition linewidths with the magnetic field are also discussed. Our results agree with the current experiments on graphene in high magnetic field, and provide an alternative explanation for the experimental measurements.  相似文献   

11.
It is shown in the framework of the generalized mean-field approximation taking into account spatial fluctuations of the local magnetic field that the collective effect of dipole interaction in a random 3D system of identical (rodlike) magnetic nanoparticles with parallel easy magnetization axes shifts the relaxation magnetization curves towards shorter times (i.e., accelerates the relaxation process). In addition, the course of this process depends (via the demagnetizing field) on the sample shape. The interaction between nanograins affects the magnetization relaxation of a random 2D system only when the magnetic moments of the grains are perpendicular to the plane of the system.  相似文献   

12.
The magnetic field dependence of the nuclear spin-lattice relaxation rate provides a detailed report of the spectral density functions that characterize the intra- and intermolecular fluctuations that drive magnetic relaxation. We have addressed the difficult sensitivity and resolution problems associated with low magnetic field strengths by using two magnets in close proximity and shielded from each other. The sample is stored in the high magnetic field, pneumatically driven to the variable satellite field, then returned to the high field for detection at high resolution. A magnetic shield effectively decouples the two magnets so that varying the satellite field strength has minimal effect on the field strength and shim of the high field magnet. The disadvantage of the sample-shuttle magnet-pair system is the restriction imposed on the relaxation times by the finite shuttle times. Experiments not described here have shown this rate maximum to be about 20 s(-1) for most practical solutions. However, we demonstrate here that the sensitivity gains over switched-current magnet systems permit characterization of solute inter- and intramolecular dynamics over the time scale range from tens of microseconds to less than a picosecond. This range permits investigation of a number of crucial chemical dynamics questions, while high sensitivity permits examination of a variety of solute spins. Representative data are presented for (1)H, (111)Cd, and (7)Li.  相似文献   

13.
The relaxation behavior (including the rising and falling relaxation processes) of the transmitted light after the magnetic fluid thin films under longitudinal and transverse magnetic fields is investigated, respectively. The physical mechanisms of the two different relaxation processes are discussed. The experimental data of the rising and falling relaxation processes are fitted by using two exponential functions to achieve the rising and falling response times. The relationship between the response time and the strength of applied magnetic field, the concentration of magnetic fluid is studied experimentally. The modulation depth of the transmitted light is researched quantificationally and the deepest modulation depth is obtained with Sample 3 (with volume fraction of 5.62%) in our experiments.  相似文献   

14.
We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr--Purcell--Meiboom--Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin--spin relaxation even in the presence of magnetic field temporal instability.  相似文献   

15.
By combining magnetic field cycling in the range from 0.1mT to 7T with high-resolution NMR detection the T(1) relaxation dispersion (nuclear magnetic relaxation dispersion (NMRD)) of protons in the nucleotides adenosine mono-phosphate and guanosine mono-phosphate was measured in a site-specific way. While at high field the individual spins have distinctly different T(1) times, their scalar spin-spin interaction fulfills at low field the condition of strong coupling and leads to convergence of their T(1) dispersion curves. In addition, the spin-spin coupling can lead to oscillatory components in the relaxation kinetics traceable to a coupling between spin polarization and coherence in the relaxation process. As a consequence the NMRD curves do not directly reflect the spectral density function of the motional processes, but the effects of motion and spin coupling must be separated for a reliable evaluation. A theoretical approach is described allowing such an analysis.  相似文献   

16.
Mössbauer spectra of LiNbO3: Fe(III)-monocrystals were measured in zero external magnetic field (5mK to 673K). They all show typical lineshapes due to relaxation effects. Below 77K temperature independent and above 77K a temperature-dependent relaxation is observable. In spectra measured in external magnetic fields relaxation effects occur only above 77K. We present least square fits of spectra measured at 300K and external magnetic fields using symmetry invariant reservoir spectral densities. The applied numerical formalism takes the complete electronuclear manifold of57Fe(III) into account. We discuss the problems concerning the interpretation of zero field spectra.  相似文献   

17.
A contact-free method to obtain the current-voltage characteristics (CVC) of hard superconductors by measuring the relaxation of the magnetization in a perpendicular magnetic field is developed. The relaxation curves obtained for melt-textured YBCO samples are well fitted by curves calculated within the electrodynamic model using a power-law CVC. This procedure uses only two fitting parameters, namely, the critical sheet current Jc and the exponent m of the power-law CVC.  相似文献   

18.
We explore the dielectric relaxation properties of NiFe nanowires in a nanoporous silicon template. Dielectric data of the NiFe–silicon structure show a strong relaxation resonance near 30 K. This system shows Arrhenius type of behavior in the temperature dependence of dissipation peaks vs. frequency. We report magnetic field dependence of dipolar relaxation rate and the appearance of structure in the dielectric spectrum related to multiple relaxation rates. A magnetic field affects both the exponential prefactor in the Arrhenius formula and the activation energy. From this field dependence we derive a simple exponential field dependence for the prefactor and linear field approximation for the activation energy which describes the data. We find a significant angular dependence of the dielectric relaxation spectrum for regular silicon and nanostructured silicon vs. magnetic field direction, and describe a simple sum rule that describes this dependence. We find that although similar behavior is observed in both template and nanostructured materials, the NiFe–silicon shows a more complex, magnetic field dependent relaxation spectrum.  相似文献   

19.
It is shown theoretically and experimentally that, under weak radiofrequency (RF) field conditions, nutation frequency depends on relaxation times. The Fourier transform of a nutation curve, which is obtained by plotting signal amplitude as a function of RF field application time, yields separate bands corresponding to the components of an unresolved composite signal. This can be effectively achieved provided that these components possess different relaxation characteristics. Using proton nuclear magnetic resonance, this new method is applied to the study of water in clays and leads to the proportion of different types of water. The case where one water species appears in the form of a Pake doublet is considered.  相似文献   

20.
In this article we study the effect of external magnetic field and electric field on spin transport in bilayer armchair graphene nanoribbons (GNR) by employing semiclassical Monte Carlo approach. We include D'yakonov-Perel' (DP) relaxation due to structural inversion asymmetry (Rashba spin-orbit coupling) and Elliott-Yafet (EY) relaxation to model spin dephasing. In the model we neglect the effect of local magnetic moments due to adatoms and vacancies. We have considered injection polarization along z-direction perpendicular to the plane of graphene and the magnitude of ensemble averaged spin variation is studied along the x-direction which is the transport direction. To the best of our knowledge there has been no theoretical investigation of the effects of external magnetic field on spin transport in graphene nanoribbons. This theoretical investigation is important in order to identify the factors responsible for experimentally observed spin relaxation length in graphene GNRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号