首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Three-dimensional flow in axial flow fans of non-free vortex design   总被引:4,自引:0,他引:4  
Three-dimensional laser Doppler anemometer (LDA) measurements were carried out downstream of isolated axial fan rotors of non-free vortex design in order to investigate the role of radial velocity components in design. The structure of secondary flows due to non-free vortex operation was studied in detail. It is pointed out that the tangential gradient of radial velocity at midspan is nearly in direct proportion with the spanwise gradient of ideal total head rise prescribed in design. Design criteria have been established for the neglect of torsion of stream surface segments inside the blading. A linear relationship was proposed in order to estimate the pitch-averaged radial velocities at the rotor exit. Using this relationship, a proposal has been put forward for taking the radial velocity components into account in non-free vortex design with the assumption of conical stream surfaces through the blading.  相似文献   

2.
High-resolution PIV measurements of the flow field inside cross-flow fans have been performed in planes normal and parallel to the fan axis, both outside and inside the impeller. The well known difficulties in obtaining the optical access inside the impeller have been overcome by allowing the internal flow planes to be illuminated by the laser light sheet or shot by the CCD camera through the moving blade vanes. Measurements have been performed in two cross-flow fans having the same two-module impeller but casing geometries based on very different design concepts. PIV data in planes normal to the rotor axis show a strong correlation between vorticity distribution and turbulent shear stresses inside the eccentric vortex of each fan. Furthermore, they provide useful elements to explain the very different performance of the two fans evidenced by their characteristic curves. Measurements in planes parallel to the impeller axis show that wide three-dimensional recirculation structures develop near the casing end walls at the discharge of the fans. These mean flow structures are responsible for the backflow into the end portions of the impeller of part of the discharged fluid, which is then transported axially by the eccentric vortex towards the rotor central disc before being discharged once again outside the impeller. In the case of cross-flow fans including few rotor modules, the existence of significant axial velocity components inside the eccentric vortex can alter substantially the flow picture, common in the current literature, resulting from 2-D numerical models or measurements performed in a single transverse plane of the fan.  相似文献   

3.
The effect of a casing fence on the tip-leakage flow of an axial flow fan is investigated using large eddy simulation. A fence is attached on the shroud near the trailing edge of an axial flow fan used in an outdoor unit of air conditioner. The Reynolds number is 547,000 based on the blade tip radius and tip velocity. At the design condition, the fan efficiency is increased by the casing fence. The roles of the fence are to block backward leakage flows near the shroud and to weaken the movement of the tip-leakage vortex (TLV) in the azimuthal direction. Also, the fence reduces the double-leakage tip-clearance flow generated at the aft part of the blade tip due to the TLV-blade interaction, reducing the strength of the tip-separation vortex. Consequently, the tip leakage and total pressure losses are reduced, and the efficiency is increased. The pressure fluctuations on the aft part of the blade tip of the pressure surface caused by the TLV-blade interaction are also significantly reduced by the fence, indicating reduction of the noise source. According to the interaction between the fence and backward leakage flow induced by the TLV, the fence significantly and slightly increases the aerodynamic performances at the design and peak efficiency conditions, respectively, but reduces them at an overflow condition.  相似文献   

4.
发展了一种基于鲁棒Riemann求解器和运动重叠网格技术计算直升机悬停旋翼流场的方法。基于惯性坐标系,悬停旋翼流场是非定常流场,控制方程为可压缩Reynolds平均Navier-Stoke方程,其对流项采用Roe近似Reimann求解器离散,使用改进的五阶加权基本无振荡格式进行高阶重构,非定常时间推进采用含牛顿型LUSGS子迭代的全隐式双时间步方法。为实施旋转运动和便于捕捉尾迹,计算采用运动重叠网格技术。计算得到的桨叶表面压力分布及桨尖涡涡核位置都与实验结果吻合较好。数值结果表明:所发展方法对桨尖涡具有较高的分辨率,对激波具有较好的捕捉能力,该方法可进一步推广到前飞旋翼粘性绕流的计算。  相似文献   

5.
Numerical simulation of multi‐bladed lifting rotors in forward flight is considered. The flow‐solver presented is multiblock and unsteady, which is essential for forward flight, and also includes multigrid acceleration to reduce run‐times. A structured multiblock grid generator specifically for rotor blades has also been developed and is presented here. Previous work has shown that hovering lifting rotor flows are particularly expensive to simulate, since the capture of the vortical wake below the disc requires a long numerical integration time; more than 20 revolutions for an unsteady simulation, or more than 40000 time‐steps for a single grid steady simulation. It is demonstrated here that only two or three revolutions are required to obtain a converged solution for forward flight, since the wake is swept downstream. This requires less than 1.5 × the run‐time of a steady hovering simulation, for the same grid density around each blade, even though an unsteady simulation is required and the complete disk must be solved rather than one blade as in hover. It is demonstrated that very fine meshes are required to capture the unsteady tip vortex motion, and the effects on blade loading of blade‐vortex interaction and rotor shaft inclination are also considered. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The main purpose of the current investigation is the development and evaluation of a numerical model used to simulate the effect of an axial flow fan on the velocity field in the vicinity of the fan blades. The axial flow fan is modeled as an actuator disc, where the actuator disc forces are calculated using blade element theory. The calculated disc forces are expressed as sources/sinks of momentum in the Navier–Stokes equations solved by a commercially available computational fluid dynamic (CFD) code, Flo++. The model is used to determine the fan performance characteristics of an axial flow fan as well as the velocity fields directly up‐ and downstream of the fan blades. The results are compared with experimental data. In general, good agreement is obtained between the numerical results and experimental data, although the fan power consumption, as well as radial velocity downstream of the fan blades, is underpredicted by the fan model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The purpose of this work is to study the effects of blade thickness on the performances of an axial-flow fan. Two fans that differ only in the thickness of their blades were studied. The first fan was designed to be part of the cooling system of an automotive vehicle power unit and has very thin blades. The second fan has much thicker blades compatible with the rotomoulding conception process. The overall performances of the fans were measured in a test bench designed according to the ISO-5801 standard. The curve of aerodynamics characteristics (pressure head versus flow-rate) is slightly steeper for the fan with thick blades, and the nominal point is shifted towards lower flow-rates. The efficiency of the thick blades fan is lower than the efficiency of the fan with thin blades but remains high on a wider flow-rate range. The mean velocity fields downstream of the rotors are very similar at nominal points with less centrifugation for the thick blades fan. Moreover, the thick blades fan maintains an axial exit-flow on a wider range of flow-rates. The main differences concern local properties of the flow: phase-averaged velocities and wall pressure fluctuations strongly differ at the nominal flow-rates. The total level of fluctuations is lower for the thick blades fan that for the thin blades fan and the spectral decomposition of the wall fluctuations and velocity signals reveal more harmonics for the thick blades fan, with less correlation between the different signals. For this kind of turbomachinery, the use of thick blades could lead to a good compromise between aerodynamic and acoustic performances, on a wider operating range.  相似文献   

8.
The accurate characterization and simulation of rotor tip clearance flows has received much attention in recent years due to their impact on compressor performance and stability. At NASA Glenn the first known three dimensional digital particle image velocimetry (DPIV) measurements of the tip region of a low speed compressor rotor have been acquired to characterize the behavior of the rotor tip clearance flow. The measurements were acquired phase-locked to the rotor position so that changes in the tip clearance vortex position relative to the rotor blade can be seen. The DPIV technique allows the magnitude and relative contributions of both the asynchronous motions of a coherent structure and the temporal unsteadiness to be evaluated. Comparison of measurements taken at the peak efficiency and at near stall operating conditions characterizes the mean position of the clearance vortex and the changes in the unsteady behavior of the vortex with blade loading. Comparisons of the 3-D DPIV measurements at the compressor design point to a 3D steady N-S solution are also done to assess the fidelity of steady, single-passage simulations to model an unsteady flow field.  相似文献   

9.
旋翼尾流与地面干扰时地面涡现象的研究   总被引:1,自引:0,他引:1  
康宁  孙茂 《力学学报》1998,30(5):615-620
用N-S方程对近地飞行时旋翼尾流与地面干扰时产生的地面涡现象进行了数值计算旋翼对流场的作用由分布在特定区域内的动量源项模拟结果表明,旋翼尾流撞到地面后的卷起和轴向流动的拉伸作用是形成地面涡的原因;地面边界层形成的二次分离涡向地面涡内输入(与尾流所携带的涡量)相反的涡量,而使地面涡保持平衡;地面涡的存在和运动使旋翼附近流场大大改变  相似文献   

10.
 The relative flows around a flat plate axial impeller in a mixing vessel were visualized directly using a combined image shifting and image de-rotation technique. The image shifting technique used a rotating mirror to produce a velocity bias equal to the blade velocity so that the relative flow field could be studied in a co-axial plane cutting through the 2-dimensional blade section. The technique provides a rapid means of locating local flow separation on the blade. To visualize the relative flow field in the plane of the blade span, an image de-rotation method was used. The method includes using a dove-shaped prism which, when rotated, produce a rotation of an image about the optical axis. It was observed in the relative frame of reference through the prism that a new vortex structure, not reported previously, with vorticity sign opposite to that of the rotation of the shaft, exists near the hub at the high pressure side of the blade. Received: 17 June 1996/Accepted:12 November 1996  相似文献   

11.
 An experimental investigation was made to study the aperiodic flow characteristics of the tip vortices generated by one-bladed and two-bladed hovering rotors. Measurements of the tip vortex locations and accompanying aperiodicity statistics were established as a function of vortex age. Velocity field measurements were made using three-component laser Doppler velocimetry. The average amplitude of the aperiodicity was found to be a fraction of the measured viscous core radius, this being approximately 5% of blade chord or about 50% of the core radius for wake ages of less than two rotor revolutions. The aperiodicity appeared isotropic. A numerical analysis of the aperiodicity problem based on convolution with an assumed displacement probability function showed that for this experiment the measured tangential velocities in the tip vortices were underestimated by approximately 20% and the viscous core radii were overestimated by 20%. There was no evidence that the number of blades or the blade passage adversely influenced the aperiodicity of the rotor tip vortices. Received: 22 August 1997/Accepted: 4 February 1998  相似文献   

12.
This paper presents a novel viscous inverse method for blade design. In this inverse design method the mass‐averaged tangential velocity and the blade thickness are prescribed, and the corresponding blade profile is sought. The blade profile is then computed iteratively using the discrepancies between the prescribed mass‐averaged tangential velocity distribution and its calculated distribution on an initial blade. The re‐design of an axial rotor blade, starting from an initial arbitrary profile in subsonic flow regimes, demonstrates the merits and robustness of this approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a numerical fluid flow model for the stamped metal cooling fans popularly employed in electric motors. An experimental system is constructed to measure the performance of the cooling fan. The agreements between model prediction and experimental data are reasonably good. Parametric studies with the numerical model indicate that the viscous heating in the fluid and the variation of the air density have negligible effects on the fan performance. The blade edge thickness affects the flow driving capability of the fan. With various pressure differentials, three flow regimes are recognized. The first is the axial component dominated flow. In the second regime, the flow has a forward axial flow and a backward leakage flow. The third one is the leakage flow dominated regime, when the pressure differential across the fan is large.  相似文献   

14.
本文是理论计算与工程实际相结合的典型例子.某电厂锅炉送风机,多次发生叶片断裂事故,严重影响了电厂生产的正常运行,受电厂委托,我所就风机动叶片断裂事故,采用有限元方法对转子、支承结构、壳体和动叶片均进行了一系列的计算分析,找出了故障原因,并提出了改进措施.  相似文献   

15.
Scaled versions of fan designs are often chosen to address thermal management issues in space constrained applications. Using velocity field and local heat transfer measurement techniques, the thermal performance characteristics of a range of geometrically scaled centrifugal fan designs have been investigated. Complex fluid flow structures and surface heat transfer trends due to centrifugal fans were found to be common over a wide range of fan aspect ratios (blade height to fan diameter). The limiting aspect ratio for heat transfer enhancement was 0.3, as larger aspect ratios were shown to result in a reduction in overall thermal performance. Over the range of fans examined, the low profile centrifugal designs produced significant enhancement in thermal performance when compared to that predicted using classical laminar flow theory. The limiting non-dimensional distance from the fan, where this enhancement is no longer apparent, has also been determined. Using the fundamental information inferred from local velocity field and heat transfer measurements, selection criteria can be determined for both low and high power practical applications where space restrictions exist.  相似文献   

16.
本文利用气-固两相流单相耦合和简化的双相耦合模型,计算了离心风机四种典型荷规律叶片的磨损与积尘特性,考察了叶片的加载规律与其磨损部位,磨损量和积尘趋势的关系以及固粒在叶片上的碰撞角,碰撞速度的分布规律,为设计高效含尘风机提出了新的建议。经过固相对风机特性影响的实验研究。证了用于予测风机磨损特性的“单相耦合”模型的可行性。  相似文献   

17.
The Flow Visualization Gun (FVG), a novel time line visualization technique, has been used to investigate the flow field of a helicopter rotor with swept back tip shape in hover flight condition. After introducing the FVG-technique, the paper presents some visualization photographs of the rotor blade tip vortices and the rotor downwash. Using orthogonal sets of flow photographs and digital image analysis, the 3-dimensional time line displacement within the flow and the tip vortex structure are determined. The data of 16 time line experiments are interpolated in space and time to obtain velocity data on an evenly spaced 3-dimensional grid. Vorticity contour plots of the flow field show the complex arrangement of the tip vortices of the blade itself and of the preceding blade and some additional vorticity in the direct wake which may form a secondary vortex. Understanding and control of this vorticity distribution is important for the design of new efficient tip shapes. While the FVG technique has been used so far for qualitative investigation of complex flow patterns at local velocities of up to 20 m/s, a good comparison to laser velocimetry data validates the technique as an interesting tool for both qualitative and quantitative investigation. This research was supported by a “Poste Rouge” grant by the Centre National de la Recherche Scientifique (C.N.R.S.). The authors would like to thank all members of the IRPHE for their help concerning the mechanical and electronical set up of the experiments.  相似文献   

18.
An experimental analysis using three-dimensional laser Dopplervelocimetery (LDV) measurements and computational analysis usingthe Reynolds stress model of the commercial code, FLUENT, wereconducted to give a clear understanding on the structure of thetip leakage flow in a forward-swept axial-flow fan operating atthe peak efficiency condition, and to emphasize the necessity ofusing an anisotropic turbulence model for the accurate predictionof the tip leakage vortex. The rolling-up of the tip leakage flowwas initiated near the position of the maximum static pressuredifference, which was located at approximately 12% axial tipchord downstream from the leading edge of the blade, and developedalong the centerline of the pressure trough on the casing. Areverse flow between the blade tip and the casing due to the tipleakage vortex acted as a blockage on the through-flow. As aresult, high momentum flux was observed below the tip leakagevortex. As the tip leakage vortex proceeded to the aft part of theblade passage, the strength of the tip leakage vortex decreaseddue to the strong interaction with the through-flow and the casingboundary layer, and the diffusion of the tip leakage vortex byhigh turbulence. Through the comparative study of turbulencemodels, it was clearly shown that an anisotropic turbulence model,e.g., Reynolds stress model, should be used to predict reasonablyan anisotropic nature of the turbulent flow fields inside the tipleakage vortex. In comparison with LDV measurement data, thecomputed results predicted the complex viscous flow patternsinside the tip region in a reliable level.  相似文献   

19.
The over-tip casing of the high-pressure turbine in a modern gas turbine engine is subjected to strong convective heat transfer that can lead to thermally induced failure (burnout) of this component. However, the complicated flow physics in this region is dominated by the close proximity of the moving turbine blades, which gives rise to significant temporal variations at the blade-passing frequency. The understanding of the physical processes that control the casing metal temperature is still limited and this fact has significant implications for the turbine design strategy. A series of experiments has been performed that seeks to address some of these important issues. This article reports the measurements of time-mean heat transfer and time-mean static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. Time-resolved measurements of these flow variables (that reveal the details of the blade-tip/casing interaction physics) are presented in a companion paper. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 × 106 based on nozzle guide vane mid-height axial chord. The axial and circumferential distributions of heat transfer rate, adiabatic wall temperature, Nusselt number and static pressure are presented. The data reveal large axial variations in the wall heat flux and adiabatic wall temperature that are shown to be primarily associated with the reduction in flow stagnation temperature through the blade row. The heat flux falls by a factor of 6 (from 120 to 20 kW/m2). In contrast, the Nusselt number falls by just 36% between the rotor inlet plane and 80% rotor axial chord; additionally, this drop is near to linear from 20% to 80% rotor axial chord. The circumferential variations in heat transfer rate are small, implying that the nozzle guide vanes do not produce a strong variation in casing boundary layer properties in the region measured. The casing static pressure measurements follow trends that can be expected from the blade loading distribution, with maximum values immediately upstream of the rotor inlet plane, and then a decreasing trend with axial position as the flow is turned and accelerated in the relative frame of reference. The time-mean static pressure measurements on the casing wall also reveal distinct circumferential variations that are small in comparison to the large pressure gradient in the axial direction.  相似文献   

20.
Stereo particle image velocimetry measurements focus on the flow structure and turbulence within the tip leakage vortex (TLV) of an axial waterjet pump rotor. Unobstructed optical access to the sample area is achieved by matching the optical refractive index of the transparent pump with that of the fluid. Data obtained in closely spaced planes enable us to reconstruct the 3D TLV structure, including all components of the mean vorticity and strain-rate tensor along with the Reynolds stresses and associated turbulence production rates. The flow in the tip region is highly three-dimensional, and the characteristics of the TLV and leakage flow vary significantly along the blade tip chordwise direction. The TLV starts to roll up along the suction side tip corner of the blade, and it propagates within the passage toward the pressure side of the neighboring blade. A shear layer with increasing length connects the TLV to the blade tip and initially feeds vorticity into it. During initial rollup, the TLV involves entrainment of a few vortex filaments with predominantly circumferential vorticity from the blade tip. Being shed from the blade, these filaments also have high circumferential velocity and appear as swirling jets. The circumferential velocity in the TLV core is also substantially higher than that in the surrounding passage flow, but the velocity peak does not coincide with the point of maximum vorticity. When entrainment of filaments stops in the aft part of the passage, newly forming filaments wrap around the core in helical trajectories. In ensemble-averaged data, these filaments generate a vortical region that surrounds the TLV with vorticity that is perpendicular to that in the vortex core. Turbulence within the TLV is highly anisotropic and spatially non-uniform. Trends can be traced to high turbulent kinetic energy and turbulent shear stresses, e.g., in the shear layer containing the vortex filaments and the contraction region situated along the line where the leakage backflow meets the throughflow, causing separation of the boundary layer at the pump casing. Upon exposure to adverse pressure gradients in the aft part of the passage, at 0.65–0.7 chord fraction in the present conditions, the TLV bursts into a broad turbulent array of widely distributed vortex filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号