首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
左心室壁局部范围MRI三维有限元应变解析   总被引:1,自引:0,他引:1  
利用磁共振标记技术对左心室壁进行局部三维有限元应变的分析.在…个心动周期内,分别拍摄24张短轴平面图像和长轴平面图像,然后进行合成,求解出健康人左心室壁上各个位置不同时刻的位移和应变,为临床应用和定量准确地评价心功能提供重要的理论依据.  相似文献   

2.
A technique is proposed for the processing of digital particle image velocimetry (PIV) images, in one single step providing direct estimates of fluid velocity, out-of-plane vorticity and in-plane shear rate tensor. The method is based on a generalization of the standard PIV cross-correlation technique and substitutes the usual discrete cross-correlation of image pairs with a correlation of interpolated two-dimensional image intensity functions, being subject to affine transformations. The correlation is implemented by using collocation points, on which image intensity values are interpolated. The resulting six-dimensional correlation function is maximized using a general purpose optimization algorithm. The use of the method is demonstrated by application to different types of synthetically generated image pairs constructed with known particle displacement functions. The resulting errors are assessed and compared with those of a representative standard PIV method as well as with those of the present technique using no differential quantities in the search of the peak location. The examples demonstrate that significant improvements in accuracy can be obtained for flow fields with regions containing strong velocity gradients.  相似文献   

3.
In this paper, we propose a method for the solution of the axisymmetric boundary value problem for a finite elastic cylinder with assigned stress and/or displacements acting on the ends and side. The technique utilizes the Love representation, which allows for reduction of the solution of the elastic problem to the search for a biharmonic function on a cylindrical domain. In the solution method suggested here, we write the Love function with a Bessel expansion and analyze in detail the conditions under which it is possible to differentiate the expansion term by term. We show that this is possible only for a restricted class of elastic solutions. In the general case, we introduce two new auxiliary functions of the z-coordinate. In this way, we obtain the general form of the axisymmetric biharmonic function, which is discussed in relation to certain specific boundary conditions applied on the side and ends of the cylinder. We obtain an exact explicit solution of practical interest for a cylinder with free ends and assigned displacements applied to the side.  相似文献   

4.
The measurements of the width of a localized zone on the surface of notched concrete beams under quasi-static three-point bending were performed using the 2D Digital Image Correlation technique. Different image length resolutions, image search patches and distances between search patch centres were tested. Attention was paid to the accuracy and objectivity of surface displacements measured. An original method was proposed to determine the width of localized zones above the notch based on experiments.  相似文献   

5.
This paper describes a numerical method to simulate the debonding of adhesively bonded joints. Assuming that the adhesive thickness and the adhesive Young’s modulus are small with respect to the characteristic length of the joint and to the Young’s modulus of the adherents, a simplified model is derived in the case of large displacements using the asymptotic expansion technique. Then, the problem of the crack growth is stated, in the case of a stable growth, as the search of the local minima of the total energy of the joint, sum of the mechanical energy and the Griffith’s fracture energy. This is made using the Newton’s method. To this end, the expressions of the first and second derivatives of the mechanical energy with respect to a crack front displacement are derived analytically. Finally, numerical examples are presented, highlighting the unstable character of the crack growth at initiation.  相似文献   

6.
Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.  相似文献   

7.
Background

Digital Image and Volume Correlation (DIC and DVC) are non-contact measurement techniques that are used during mechanical testing for quantitative mapping of full-field displacements. The relatively high noise floor of DIC and DVC, which is exasperated when differentiated to obtain strain fields, often requires some form of filtering. Techniques such as median filters or least-squares fitting perform poorly over high displacement gradients, such as the strain localisation near a crack tip, discontinuities across crack flanks or large pores. As such, filtering does not always effectively remove outliers in the displacement field.

Objective

This work proposes a robust finite element-based filter that detects and replaces outliers in the displacement data using a finite element method-based approximation.

Methods

A method is formulated for surface (2D and Stereo DIC) and volumetric (DVC) measurements. Its validity is demonstrated using analytical and experimental displacement data around cracks, obtained from surface and full volume measurements.

Results

It is shown that the displacement data can be filtered in such a way that outliers are identified and replaced. Moreover, data can be smoothed whilst maintaining the nature of the underlying displacement field such as steep displacement gradients or discontinuities.

Conclusions

The method can be used as a post-processing tool for DIC and DVC data and will support the use of the finite element method as an experimental–numerical technique.

  相似文献   

8.
基于针对分子动力学-Cauchy连续体模型提出的连接尺度方法(BSM)[1,2],发展了耦合细尺度上基于离散颗粒集合体模型的离散单元法(DEM)和粗尺度上基于Cosserat连续体模型的有限元法(FEM)的BSM。仅在有限局部区域内采用DEM以从细观层次模拟非连续破坏现象,而在全域则采用花费计算时间和存储空间较少的FEM。通过连接尺度位移(包括平移和转动)分解,和基于作用于Cosserat连续体有限元节点和颗粒集合体颗粒形心的离散系统虚功原理,得到了具有解耦特征的粗细尺度耦合系统运动方程。讨论和提出了在准静态载荷条件下粗细尺度域的界面条件,以及动态载荷条件下可以有效消除粗细尺度域界面上虚假反射波的非反射界面条件(NRBC)。本文二维数值算例结果说明了所提出的颗粒材料BSM的可应用性和优越性,及所实施界面条件对模拟颗粒材料动力学响应的有效性。  相似文献   

9.
The relationship between the displacements and stresses relieved from blind-hole drilling is introduced via an easily understandable concept in this paper. Combining this concept with holographic interferometry, two holographic blind-hole methods for measuring residual stresses are established. The first is a new technique which requires measuring three out-of plane displacements; and the second is a modification of another technique which requires measuring two out-of plane displacements. Each of the two methods needs only one interference fringe pattern and is demonstrated by using it to measure a known residual stress in an aluminum specimen.  相似文献   

10.
The analytical method of superposition is combined with the experimental technique of multiple-exposure holography to decrease the sensitivity of holographic measurement by at least an order of magnitude. Moiré fringes of a lower frequency are produced which simultaneously extend the range of measurement to larger displacements. The method is demonstrated for the case of a clamped circular plate subjected to a concentrated load centrally applied.  相似文献   

11.
The primary output from several full-field deformation measurement techniques, e.g., Digital Image Correlation (DIC), is the displacement vector at a dense grid of points covering the area of interest. Since such displacement data inherently contain noise, they are usually smoothed first and then differentiated to obtain strains. Another common approach is to use finite-element shape functions for the strains and compute them by treating the measured displacements as nodal displacements. In this paper, we propose a novel method for strain calculation from full-field data, based on the multivariate analysis technique of Principal Component Analysis (PCA) using which we first obtain the singular values and singular vectors for each component of the displacement field. By choosing only the dominant singular values and their corresponding singular vectors, we show that the dimensionality of the displacement data is sharply reduced and a significant portion of the noise is eliminated. Moreover, the shapes of the dominant singular vectors offer physical insight into dominant deformation patterns. We demonstrate the accuracy of the proposed technique by applying it to two cases each of homogeneous and inhomogeneous strain fields and show that in all cases the proposed method yields excellent results.  相似文献   

12.
Digital Image Correlation (DIC) provides a full-field non-contact optical method for accurate deformation measurement of materials, devices and structures. The measurement of three-dimensional (3D) deformation using DIC in general requires imaging with two cameras and a 3D-DIC code. In the present work, a new experimental technique, namely, Diffraction Assisted Image Correlation (DAIC) for 3D displacement measurement using a single camera and 2D-DIC algorithm is presented. A transmission diffraction grating is placed between the specimen and the camera, resulting in multiple images which are then used to obtain apparent in-plane displacements using 2D-DIC. The true in-plane and out-of-plane displacements of the specimen are obtained from the apparent in-plane displacements and the diffraction angle of the grating. The validity and accuracy of the DAIC method are demonstrated through 3D displacement measurement of a small thin membrane. This technique provides new avenues for performing 3D deformation measurements at small length scales and/or dynamic loading conditions.  相似文献   

13.
Recently, a number of techniques have been presented for the determination of the third “out-of-plane” velocity component in micro particle image velocimetry (micro-PIV) data. In particular, the conventional macroscopic stereo-PIV technique has been converted to the micro scale by the use of stereo-microscopy. In this work a different technique is investigated, which uses conventional, two-component micro-PIV to generate velocity data on a number of planes. The in-plane velocity gradients are then calculated, which can be used in the continuity equation to produce the out-of-plane velocity gradients. These, together with the no-penetration boundary condition, can then be used to calculate the out-of-plane velocities. An algorithm is presented that is capable of handling up to one invalid vector per column of data by using a combination of first order and second order projections of the velocity. The advantage of the continuity based technique is that it uses the existing two-component micro-PIV technology, which at present is in a more advanced stage of development then stereo-microscopy based micro-PIV. The technique is investigated using a flow similar to one used previously to assess stereoscopic micro-PIV (Meas Sci Technol 17:2175–2185, 2006). This allows a comparison of the performance of the two techniques. The results show that the continuity based data agrees well with an independent computational fluid dynamics solution and has a smaller experimental uncertainty than the stereoscopic technique at a better spatial resolution. There are, however, potential limitations to the continuity based technique. These include the two-dimensionality of the data, which is limited to the planes on which the original images were taken, and the dependence of the technique on the data close to surfaces, where the experimental errors are often greatest. Stereoscopic micro-PIV does not have these limitations so, whilst at present it appears that continuity based techniques may be more accurate, there is sufficient potential for stereoscopic techniques to justify their further development.  相似文献   

14.
Stress evaluation by pulse-echo ultrasonic longitudinal wave   总被引:3,自引:0,他引:3  
In this paper, an activity aimed at developing an ultrasonic technique for evaluation of states of stress, and in the presence of gradients deriving from local effects of concentrated stress, is presented. The approach is based on the acoustoelastic effect in which ultrasonic wave propagation speed is linked to the magnitude of the stresses present. The technique developed calls for the use of longitudinal waves in pulse-echo technique that propagate in a direction perpendicular to the surface of the work piece. The technique has been applied in different experimental configurations on test specimens with concentration of stresses deriving from notches and fatigue cracks and has furnished encouraging results that highlight the potentiality of the method.  相似文献   

15.
A technique is presented for measuring velocity, density and scalar transport in a buoyant rotating gravity current. Existing methods for combined PIV and PLIF are modified for use in a stratified flow on a rotating table and strategies for beam alignment, index of refraction matching, surface tension matching and photobleaching correction are presented. In addition, the PIV–PLIF technique is modified to resolve the velocity and density fields in a cross-section of the current perpendicular to the mean flow direction, allowing the transport in this direction to be computed. This is done by rotating the plane of the laser sheet 15° to the horizontal. This sheet angle is high enough that the entire cross-section of the current is contained in the viewing area, but low enough that horizontal PIV particle displacements are resolved. The technique is used successfully to measure the transport of buoyant fluid in a non-rotating channel to within 5% of the prescribed flow. Results from a rotating gravity current experiment are then presented and compared with previous experiments.  相似文献   

16.
应变梯度理论自然邻近混合伽辽金法   总被引:1,自引:1,他引:0  
应变梯度理论考虑了位移二阶梯度对应变能密度函数的贡献,在本构关系中引入了与材料微结构特征尺寸相关的参数,可以唯象地解释尺度效应现象。基于约束变分原理,把位移与位移一阶梯度作为独立场变量,使用拉格朗日乘子法引入二者的协调关系,放松对试探函数连续性与完备性的要求,建立了二维及三维问题的应变梯度理论自然邻近混合伽辽金法。通过算例对方法的计算性能进行了考查,结果表明,该方法具有良好的数值精度,能够模拟材料力学性能的尺度效应。  相似文献   

17.
A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (CT). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 10003 voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90 programs for the analytical solutions are made available on-line, along with the parallel finite element codes used.  相似文献   

18.
19.
Based upon the theorems of structural variations this paper derives a set of expressions for calculating partial derivatives of internal forces, stresses and joint displacements with respect to bar areas for truss structures. Compared with the known formulas for finding the gradients of structural behaviours the calculation effort with the proposed expressions in this paper is usually smaller because the additional virtual loadings needed are relatively fewer. It is of practical significance to various optimization methods in which the calculation of gradients of behaviours is widely used. Moreover, applying the derived formulas to the fully stressed design (FSD), we obtain an improved iterative method for FSD. The numerical examples show that the new method considerably reduces the reanalysis number required to converge to an FSD in comparison with the simple stress ratio method.  相似文献   

20.
In this paper, a novel application of Finite Element Update Method (FEUM) is proposed for the inverse identification of material constitutive parameters in transversely isotropic laminates. Two-dimensional Digital Image Correlation (2D–DIC) is used for full-field measurements which is required for the identification process. Instead of measuring the in-plane displacements, which is a well-known application of 2D–DIC, we seek to measure the pseudo-displacements resulting from out-of-plane (towards camera) deflection of plate under a point load. These pseudo-displacements are basically the perspective projection of the three dimensional displacement fields on the image-plane of the image acquisition system. The cost function in this method is defined in terms of these projections instead of the true displacements – and hence the name Projected Finite Element Update Method (PFEUM). In this article, identification of in-plane elastic moduli of Carbon Fiber Reinforced Plastic (CFRP) plate has been performed using plate bending experiments which show pre-dominantly out-of-plane deflection with little contribution from the in-plane displacements. Identification results are validated by direct experimental measurements of the unknown elastic constants as well as theoretical estimates based on volume ratio of constituents. The results show good conformance between estimated and target values for at least three material parameters namely E1, E2 and G12. Effects of experimental noise on parameter estimates has also been evaluated to explain the observed deviation in estimated parameters with current test configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号