首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Representative banded iron-formations (BIFs) from various locations of the eastern Indian geological belt were investigated by instrumental neutron activation analysis (INAA). After pre-concentration, irradiation was carried out using a neutron flux of 5.1·1016 m−2·s−1, 1.0·1015 m−2·s−1 and 3.7·1015 m−2s−1, with thermal, epi-thermal and fast neutrons, respectively. The activities in these samples were measured by a HPGe detector. Ten rare-earth elements, such as La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu, have been qualitatively identified and quantitatively estimated in these samples. The present investigation is an example of employing a pre-concentration method for high iron-containing ores prior to neutron activation analysis.  相似文献   

2.
3.
The study describes a mode of non-destructive simultaneous determination of bromine and iodine concentrations, by reactor instrumental neutron activation analysis (INAA) in the regime of short-term activation. Under the conditions of 1-minute activation in the neutron flux of 8.0·1013 n·cm−2·s−1, it was possible to determine reliably as little as 5·10−8 g bromine and about 10−7 g iodine in matrices of a given type and of the mass of about 5 mg dry weight. We applied this method for the determination of Br and I concentrations in the whole rat thyroid gland as well as for the halogen speciation in fractions separated from this organ.  相似文献   

4.
At the GKSS Research Center Geesthacht, a new 14 MeV activation facility—a 5·1012 n/s neutron generator combined with a fast rabbit system (KORONA)—is being installed. Homogeneous neutron flux at a level of 5·1010 n·cm−2·s−1 and sample transfer times of 140 ms to a 16m distant detector station are characteristic features of the facility described in the paper. With special consideration of short-lived nuclides and including cyclic activation, the analytical prospects with the intense neutron source are discussed, and sensitivities for 78 elements are presented.  相似文献   

5.
A method with a sensitivity of 2·10−7 to 1·10−10% has been developed for determining Yb, Ho, Dy, Gd, Eu, Sm and La impurities in metallic uranium by means of neutron activation. The method is based on a preliminary chromatographic separation of the total amount of rare earth elements from uranium by passing the solution in sulphuric acid through KU-2 cation exchange resin and eluting the traces of uranium retained by the resin with a solution of ascorbic acid. The rare earth impurities are then eluted from the resin with 4–5N HCl, evaporated, and irradiated for 20 hours with a neutron flux of 1.2·1013 n·cm−2·sec−1. Subsequently the traces of the rare earth elements are co-precipitated with Fe(OH)3, dissolved in concentrated HCl and separated from the iron and other impurities by passing the solution through Dowex 1X8 anion exchange resin in the chloride form. The individual rare earth elements are then separated from each other using KU-2 cation exchange resin and a solution of ammonium α-hydroxyisobutyrate as the eluant.  相似文献   

6.
Certain elements which are not possible to detect with conventional neutron activation analysis can be measured using thermal neutron-capture gamma-ray analysis. The use of a curved neutron guide at the High Flux Reactor, Grenoble, with a thermal neutron flux of 1.5·1010n·cm−2·sec−1 and the advantage of a low-background counting system (Ge(Li) detector) far from the reactor core are described. Experimental detection limits of a number of elements are given for the low-energy and the high-energy regions. Some applications of the capture gamma-ray method in the whole energy range are studied and are briefly discussed.  相似文献   

7.
The experimental sensitivity for 72 different elements using 3 MeV neutron activation has been investigated. Using a 200 kV Cockcroft-Walton neutron generator with a 3 MeV neutron flux of about 1.5·106n·cm−2·sec−1, γ-ray spectra of 51 elements were obtained with a sufficient number of photopeak counts for sensitivity calculations using a photopeak integration method. A useful table summarizing the sensitivity results is given. That 3 MeV neutron activation analysis is practical, is demonstrated by the experimental sensitivities obtained. Guest worker from the Institute of Nuclear Techniques, Academy of Mining and Metallurgy, Krakow, Poland, at the National Bureau of Standards, 1968–1969.  相似文献   

8.
An alternative method of approach has been developed for the measurement of thermal neutron flux. The method depends only on the activity of the bare foil if the cadmium ratio at the irradiation position is known. The method has been tested on the GHARR-1 facility at the Ghana Atomic Energy Commission using gold and indium foils for the measurement of the thermal neutron flux in the flux range of 1010–1012 n·cm−2·s−1 and the results compare very well with those obtained using the conventional method (cadmium separation method).  相似文献   

9.
We present a NAA method to determine ultratraces of K, Th, U and other trace impurities in liquid organic scintillators, which are known as ultrapure detector materials for neutrino or dark matter experiments. A combined optimization of relevant factors for sensitive NAA has been realized, leading to a sensitivity for U down to 10−16g/g. Samples of 250 ml have been irradiated up to 120 h at a thermal neutron flux of 5–8·1012·n·cm−2·s−1. Acidic extraction, wet ashing and TBP-extraction are used for radiochemical separations. Finally, coincidence techniques are applied for increased sensitivity.  相似文献   

10.
The role of dead biomasses viz., mango (Mangifera indica) and neem (Azadirachta indica) bark samples are assessed in the removal behavior of, one of important fission fragments, Cs(I) from aqueous solutions employing a radiotracer technique. The batch type studies were carried out to obtain various physico-chemical data. It is to be noted that the increase in sorptive concentration (from 1.0·10−8 to 1.0·10−2 mol·dm−3), temperature (from 298 to 328 K) and pH (2.6 to 10.3) apparently favor the uptake of Cs(I) by these two bark samples. The concentration dependence data obeyed Freundlich adsorption isotherm and the uptake follows first order rate law. Thermodynamic data evaluation and desorption experiments reveal the adsorption to be irreversible and endothermic in nature proceeding through ion-exchange and surface complexation for both dead biomasses. Both bark samples showed a fairly good radiation stability in respect of adsorption uptake of Cs(I) when irradiated with a 300 mCi (Ra-Be) neutron source having an integral neutron flux of ∼3.85·106 n·cm−2·s−1 and associated with a nominal γ-dose of ∼1.72 Gy·h−1.  相似文献   

11.
A collimated neutron beam capable of providing a thermal neutron flux of 4.75·107 n·cm−2·sec−1 has been used to analyze alloy samples of 1–5 g during relatively short irradiation times of 30 min by the use of neutron capture gamma-ray spectrometry. The analyses were performed by using a mathematical treatment that relates the count ratio of every constituent present in the matrix with the concentration and thus it requires no standards. The technique was applied to the analysis of steel and gold alloy samples. Errors ranged from 0.8%–10%.  相似文献   

12.
For the solution of most of the problems which are connected to the biological and physiological role of natural uranium in plants and animal organisms about 10−14 g uranium should be determined. However most of the physico-chemical methods for the determination of natural uranium in biomaterials are time-consuming and possess considerable error. On the basis of addition and inner standard methods a version of Solid State Nuclear Track Detectors (SSNTD) method has been developed in order to determine the natural uranium in biospecimens. According to the experimental data simple relations have been obtained for the calculation of uranium concentration in biomaterial and minium uranium concentration in biosolution which can be measured by the detector used. Under irradiation of SSNTD at a thermal neutron flux of (3–5)·1015n·cm−2 the detector sensitivity is 2.30·10−9 g U/ml for glass detectors; 9.60·10−10g U/ml for the detectors made from artificial mica.  相似文献   

13.
An instrumental neutron activation analysis (INAA) method has been developed for multi-element determination in geological samples. The INAA method consists of irradiation of samples for 90 sec at a flux of 1.0·1012 n·cm−2·sec−1 and determination of 12 elements by using their short-lived nuclides. Samples have been re-irradiated for 3 hrs for measuring concentrations of another 10 elements. Precision and accuracy of the INAA method have been evaluated by analysing samples and USGS standard reference materials. Precision and accuracy are within±15% and ±10%, respectively.  相似文献   

14.
A procedure has been developed for the detection of gunpowder residues deposited on the hand of a person firing a gun. The method is based on neutron activation analysis of the antimony level on the surface of the hand. The surface materials are removed by a film made by spraying a 4% solution of cellulose acetate in acetone, which sets to form a thin film that can readily be stripped off. This technique was found to be preferable to the paraffin-lift technique which is in common use. Following neutron activation of the film in a nuclear reactor, antimony is assayed by high-resolution Ge(Li) spectrometry without prior chemical processing. The sensitivity of the method is about 5·10−9 g Sb, with a precision of about ±10% at a neutron flux of 5·1013 n·cm−2·sec−1. Analysis of twenty samples taken from the hands of persons who had fired a pistol gave Sb levels of 0.4±0.2 μg, compared with 0.024±0.013 μg found on the hands of persons who had not fired a revolver. The possible extension of the present technique to include the determination of additional elements is discussed. Project carried out with the support of the Office of the Chief Scientist to the Ministry of Defense and with the collaboration of the Israel Police.  相似文献   

15.
Barium is estimated in biological material by thermal neutron activation analysis and measurement of139Ba by γ-counting. The biological material is digested with nitric acid and scavenged with ferric hydroxide. A special fluoride precipitation removes calcium and strontium and the barium is recovered as the chromate. The method allows the analysis of up to 40 samples per day and the sensitivity is 0.1 μg after irradiation for 85 mins at 4·1012n·cm−2·sec−1.  相似文献   

16.
In determining the trace impurities existing in high-purity rare earth samples by the neutron activation analysis, there are much interference due to nuclides induced from neutron induced second order nuclear reaction. This paper presents the degree of interference calculated over the ranges of irradiation time from 105 to 107 sec and of thermal-neutron flux from 1·1012 to 1·1015 n·cm−2·sec−1. According to the results of these calculations, degree of interference under the neutron irradiation condition for 288 hrs in the thermal-neutron flux of 3·1013n·cm−2·sec−1 is concluded to be 6.4·106 ppm Gd in Eu, 2.2·104 ppm Sm in Eu, 1.9·104 ppm Ho in Dy, 1.1·103 ppm Eu in Sm, 1.1·102 ppm Ce in La and 1.1·10 ppm Tb in Gd, respectively. Especially, the Gd determination in the Eu target is extremely affected by153Gd formed from the151Eu (n, γ) reaction. On the contrary, this reaction is effective in producing153Gd activity.  相似文献   

17.
For the simultaneous determination of many elements in small biological samples, a multi-element analysis has been developed using neutron activation. After a 24-hr irradiation in a neutron flux of 2.5·1014 n·cm−2·sec−1 and after immediate chemical separation without cooling, it was possible to analyse 24 elements in bovine liver (NBS-SRM 1577). The separation apparatus, set up in a shielded cell can work four samples simultaneously, and its operation is fast enough to allow the detection of radioisotopes with a half-life of about 2 hrs (165Dy,57mSr,56Mn). Amounts lower than 10−3 μg of Dy, Eu, Pr, Sm and Yb were determined.  相似文献   

18.
A procedure for the determination of chromium in blood has been developed with a sensitivity of 5×10−3 μg Cr. Dried blood was irradiated with a neutron flux of 1012 n·cm−2·sec−1 in the VVRS reactor for 4 weeks, then the sample was mineralized and the chromium isolated by extraction as perchromic acid. The determination of the chromium content was accomplished by measuring the 0.32 MeV gamma energy of51Cr. In order to make correction for the interfering reaction54Fe(n,α)51Cr, the formation of chromium from high-purity iron was investigated. The chromium content of the blood samples was between 1.03×10−2 and 5.2×10−2 ppm Cr.  相似文献   

19.
A simple technique based on the measurement of the ratio of alpha-decay constant to neutron induced fission cross section for pure actinides using solid state nuclear track detectors (SSNTDs) is developed for the identification of the actinides in trace levels in pure solutions. The alpha-decay constant to fission cross section ratios for depleted U,238Pu and240Pu have been measured for the epicadmium neutron induced fission of these actinides. The measured values are (6.19±0.34)·106, (6.95±0.26)·1012, (2.12±0.95)·109 and (2.18±1.58)·1011 sec−1·cm−2, respectively. These ratios can be used for the trace level identification of pure actinides.  相似文献   

20.
The conventional multi-column solid phase extraction (SPE) chromatography technique using di-(2-ethylhexyl)orthophosphoric acid (HDEHP) impregnated OASIS-HLB sorbent based SPE resins (OASIS-HDEHP) was developed for the separation of no-carrier added (n.c.a) 177Lu from the bulk quantity of ytterbium target. This technique exploited the large variation of lutetium metal ion distribution coefficients in the varying acidity of the HCl solution-OASIS-HDEHP resin systems for the consecutive loading-eluting cycles performed on different columns. The production batches of several hundred mCi n.c.a 177Lu radioisotope separated from 50 mg Yb target activated in a nuclear reactor of medium neutron flux (Φ = 5·1013 n·cm−2·s−1) were successfully performed using the above mentioned separation technique. With the target irradiation in a reactor of thermal neutron flux Φ = 2·1014 n·cm−2·s−1 or the parallel run of several separation units, many Ci-s of n.c.a 177Lu can be profitably produced. The OASIS-HDEHP resin based multi-column SPE chromatography technique makes the separation process simple and economic and offers an automation capability for operation in highly radioactive hazardous environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号