首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Single-walled carbon nanotubes (SWCNTs) have attracted great interest in the last two decades because of their unique electrical, optical, thermal, mechanical properties, etc. One major research field of SWCNTs is the controlled growth of them from the patterned catalysts on substrates, since the integration of SWCNTs into nanoelectronics and other devices requires well-organized SWCNT arrays. This tutorial review describes the commonly used lithographic techniques to pattern catalysts used for controlled growth of SWCNTs, specifically confined to the horizontal direction. Advantages and disadvantages of each method will be briefly discussed. Applications of the SWCNT arrays grown from the catalyst patterns will also be introduced.  相似文献   

2.
Due to the simplicity of the process, holes in the graphene walls of single-wall carbon nanotubes (SWNTs) and single-wall carbon nanohorns (SWNHs) have often been opened using O2 gas at high temperatures, even though this contaminates the nanotubes with carbonaceous dust (C-dust). To open holes with less C-dust contamination, we found that a slow temperature increase of 1 degrees C/min or less, in air, was effective. We also found that SWNHs having little C-dust could store a large quantity of materials inside the tubes. We infer that the local temperature increase due to the exothermic reaction of combustion may have been suppressed in the slow combustion process, which was effective in reducing the C-dust.  相似文献   

3.
Spillover of hydrogen on nanostructured carbons is a phenomenon that is critical to understand in order to produce efficient hydrogen storage adsorbents for fuel cell applications. The spillover and interaction of atomic hydrogen with single-walled carbon nanotubes (SWNTs) is the focus of this combined theoretical and experimental work. To understand the spillover mechanism, very low occupancies (i.e., 1 and 2 H atoms adsorbed) on (5,0), (7,0), (9,0) zigzag (semiconducting) SWNTs and a (5,5) armchair (metallic) SWNT, with corresponding diameters of 3.9, 5.5, 7.0, and 6.8 A, were investigated. The adsorption binding energy of H atoms depends on H occupancy, tube diameter, and helicity (or chirality), as well as endohedral (interior) vs exohedral (exterior) binding. Exohedral binding energies are substantially higher than endohedral binding energies due to easier sp(2)-sp(3) transition in hybridization of carbon on exterior walls upon binding. A binding energy as low as -8.9 kcal/mol is obtained for 2H atoms on the exterior wall of a (5, 0) SWNT. The binding energies of H atoms on the metallic SWNT are significantly weaker (about 23 kcal/mol weaker) than that on the semiconductor SWNT, for both endohedral and exohedral adsorption. The binding energy is generally higher on SWNTs of larger diameters, while its dependence on H occupancy is relatively weak except at very low occupancies. Experimental results at 298 K and for pressures up to 10 MPa with a carbon-bridged composite material containing SWNTs demonstrate the presence of multiple adsorption sites based on desorption hysteresis for the spiltover H on SWNTs, and the experimental results were in qualitative agreement with the molecular orbital calculation results.  相似文献   

4.
We combine experimental observations with ab initio calculations to study the reversible hydrogenation of single-wall carbon nanotubes using high boiling polyamines as hydrogenation reagents. Our calculations characterize the nature of the adsorption bond and identify preferential adsorption geometries at different coverages. We find the barrier for sigmatropic rearrangement of chemisorbed hydrogen atoms to be approximately 1 eV, thus facilitating surface diffusion and formation of energetically favored, axially aligned adsorbate chains. Chemisorbed hydrogen modifies the structure and stability of nanotubes significantly and increases the inter-tube distance, thus explaining the improved dispersability in solvents like methanol, ethanol, chloroform, and benzene.  相似文献   

5.
High-quality single-wall carbon nanotubes (SWNTs) with narrow diameter distribution have been grown on Fe/Co-loaded MCM41 by using acetylene as the carbon source within a short reaction period, typically 10 min or less. The optimum temperature for SWNTs synthesis is 850 degrees C. Longer reaction time (i.e., 30 min) favors the formation of multiwall carbon nanotubes (MWNTs) and graphitic carbon. When the reaction time is reduced to less than 10 min, formation of MWNTs and graphitic carbon is greatly suppressed, and high-quality SWNTs dominates the yield. The surface of the as-grown SWNTs is found to be free from amorphous carbon, as observed from high-resolution transmission electron microscope (HRTEM) analysis. Raman spectral data show a G/D ratio above 10, indicating that the as-grown SWNTs have very few defects. Furthermore, radial breathing mode (RBM) analysis reveals that the diameter distribution of the current SWNTs is narrow and ranges from 0.64 to 1.36 nm.  相似文献   

6.
A simple and efficient technique is described for measuring photoluminescence (PL) maps of carbon nanotubes (NTs) in the extended IR range (1-2.3 mum). It consists of preparing an NT/surfactant/gelatin film and measuring PL spectra using a combination of a tunable Ti-sapphire laser excitation and FTIR detection. This procedure has been applied to a wide range of single- and double-wall NTs unveiling chirality and diameter distributions that have so far been very difficult to measure. The problems associated with deducing these distributions are discussed by comparing absorption and PL mapping data for NT samples prepared under different conditions.  相似文献   

7.
We describe the functionalization of single-wall carbon nanotubes (SWNTs) with 4-(2-trimethylsilyl)ethynylaniline and the subsequent attachment of a zinc-phthalocyanine (ZnPc) derivative using the reliable Huisgen 1,3-dipolar cycloaddition. The motivation of this study was the preparation of a nanotube-based platform which allows the facile fabrication of more complex functional nanometer-scale structures, such as a SWNT-ZnPc hybrid. The nanotube derivatives described here were fully characterized by a combination of analytical techniques such as Raman, absorption and emission spectroscopy, atomic force and scanning electron microscopy (AFM and SEM), and thermogravimetric analysis (TGA). The SWNT-ZnPc nanoconjugate was also investigated with a series of steady-state and time-resolved spectroscopy experiments, and a photoinduced communication between the two photoactive components (i.e., SWNT and ZnPc) was identified. Such beneficial features lead to monochromatic internal photoconversion efficiencies of 17.3% when the SWNT-ZnPc hybrid material was tested as photoactive material in an ITO photoanode.  相似文献   

8.
Research on material incorporation within single-wall carbon nanotubes (SWNTs) through aqueous solutions of various electrolytes is performed for the purpose of providing a foundation for future application of SWNTs to, for example, drug delivery systems. We have determined that the optical spectra of SWNTs were significantly affected when SWNTs that had opened holes or removed caps were treated through immersion in an aqueous solution of electrolytes, followed by drying at room temperature; however, the spectra of SWNTs without opened holes or removed caps were not subjected to such treatment. We infer that when the sucked solutions remained inside the tubes, even after drying (the nano-aqueous system), the electrolyte was dissociated into ions, which was likely to change the electronic states of SWNTs. On the other hand, when the SWNTs were well-dried under vacuum, no remarkable changes in their optical spectra were observed.  相似文献   

9.
The dispersion of highly hydrophobic carbon materials such as carbon nanotubes in biological media is a challenging issue. Indeed, the nonspecific adsorption of proteins occurs readily when the nanotubes are introduced in biological media; therefore, a methodology to control adsorption is in high demand. To address this issue, we developed a bifunctional linker derived from pyrene that selectively enables or prevents the adsorption of proteins on single-wall carbon nanotubes (SWNTs). We demonstrated that it is possible to decrease or completely suppress the adsorption of proteins on the nanotube sidewall by using proper functionalization (either covalent or noncovalent). By subsequently activating the functional groups on the nanotube derivatives, protein adsorption can be recovered and, therefore, controlled. Our approach is simple, straightforward, and potentially suitable for other biomolecules that contain thio or amino groups available for coupling.  相似文献   

10.
We report novel surfactants that can be used for the separation of metallic (M) and semiconducting (S) single-wall carbon nanotubes (SWCNTs). Among the M/S separation methods using surfactants in an aqueous solution, sodium dodecyl sulfate plays a key role in density gradient ultracentrifugation (DGU) and agarose gel separations. In this study, we screened 100 surfactants for M/S separation using a high-throughput screening system. We identified five surfactants, which could be used for both DGU and agarose gel separations, suggesting that the basic principle of these separations is common. These surfactants have relatively low dispersibilities, which is likely due to their common structural features, i.e., straight alkyl tails and charged head groups, and appeared to enable M- and S-SWCNTs to be distinguished and separated. These surfactants should stimulate research in this field and extend the application of electrically homogeneous SWCNTs not only for electronics but also for biology and medicine.  相似文献   

11.
Density-functional all-electrons calculations within local-density approximation show that the two isoelectronic polymers poly(para-phenylene) and poly(para-borazylene) weakly interact with zigzag single-walled carbon nanotubes. The analysis of the electronic properties of the joint systems, both with the polymer inside and outside the nanotubes, reveals a physisorption process with small changes in band structures and densities of states with respect to the constituents. We evaluate the potential barrier arising between polymers and nanotubes. Finally, we remark a generic selectivity of poly(para-phenylene) with respect to the electronic behavior of nanotubes, leading to a change in the density of states of metallic tubules.  相似文献   

12.
Chemical patterning of inorganic substrates by soft lithography has enabled various high-tech applications and cutting-edge fundamental research. In this paper, we report on methods for the grafting and patterned grafting of block copolymer nanotubes onto glass and mica surfaces. Under optimized conditions the density of such grafted nanotubes can be high, and most of the grafted tubes are in a standing position even after solvent evaporation. Surfaces modified with exotic reagents such as block copolymer nanofibers or nanotubes may find applications in biosensing, etc.  相似文献   

13.
An electrochemical method based on a single-wall carbon nanotubes (SWNTs) film-coated glassy carbon electrode (GCE) was described for the determination of tinidazole. In a 0.1 M Britton-Robinson buffer with a pH of 10.0, tinidazole yields a very sensitive and well-defined reduction peak at -0.78 V (vs. SCE) on a SWNTs-modified GCE. Compared with that on a bare GCE, the reduction peak of tinidazole increases significantly on the modified GCE. Thus, all of the experimental parameters were optimized and a sensitive voltammetric method is proposed for tinidazole determination. It is found that the reduction peak current is proportional to the concentration of tinidazole over the range from 5 x 10(-8) to 4 x 10(-5) M, and that the detection limit is 1 x 10(-8) M at 3 min open-circuit accumulation. This new analysis method was demonstrated with tinidazole drugs.  相似文献   

14.
Noncovalent interactions between purified HiPCO single-wall carbon nanotubes (SWNT) and a [60]fullerene-pyrene dyad, synthesized through a regioselective double-cyclopropanation process, produce stable suspensions in which the tubes are very well dispersed, as evidenced by microscopy characterization. Cyclic voltammetry experiments and photophysical characterization of the suspensions in organic solvents are all indicative of sizeable interactions of the pyrene moiety with the SWNT and, therefore, of the prevalence in solution of [60]fullerene-pyreneSWNT hybrids.  相似文献   

15.
The reaction of C2 with growing single-wall carbon nanotubes of different chiralities is investigated using density functional theory. It is found that the energy of the frontier orbitals for (5,5) and (6,6) armchair carbon nanotubes exhibits periodic behavior with an increasing number of carbon atoms in the nanotube. Such periodic behavior induces oscillations in the reaction energy released by adsorption of C2 to the nanotube open edge. In contrast, the energy of the frontier orbitals of the (6,5) chiral tube remains constant as the number of C atoms increases, and the same stability is observed in the adsorption energy. It is suggested that this may be one of the reasons for the low percent of armchair single-wall carbon nanotubes found in the experimental synthesis.  相似文献   

16.
Single wall carbon nanotubes (SWNTs) were synthesized by electric arc discharge method with a mixture of nickel and yttrium as catalysts. The effect of the catalyst concentration on the synthesis of SWNTs was studied. Raman spectra of SWNTs have been recorded with excitation wavelengths from 476.5 to 1064 nm. The Raman peaks of the radial breathing modes (RBM) of SWNTs were assigned. The results indicate that the diameter distribution of SWNTs is in the range of 1.2-1.6 nm, and the SWNTs with diameter 1.43 nm are in the majority. The catalyst concentrations have large effect on the yield of SWNTs and little effect on the diameter distribution of SWNTs.  相似文献   

17.
As a promising one-dimensional material for building nanodevices, single-wall carbon nanotubes (SWNTs) should be organized into a rational architecture on the substrate surface. In this study, horizontally aligned SWNTs with two alignment modes were synthesized on the same R-plane sapphire wafer by chemical vapor deposition with cationized ferritins as catalysts. In the middle part of the wafer, SWNTs were aligned on the R-plane sapphire in the direction [1101]. At the edge of the wafer, SWNTs were aligned in the tangential direction to the wafer edge. The comparison of these two groups of SWNTs suggests the competition between the two alignment modes and indicates that atomic steps in high density have superior influence on the SWNTs' alignment to the crystal structure on the surface of the sapphire substrate. A "raised-head" growth mechanism model is proposed to explain why catalysts can stay active during the horizontally aligned growth of relatively long SWNTs with the strong interaction between SWNTs and the sapphire substrate.  相似文献   

18.
The surface of carbon nanotubes (CNTs) was functionalized in different chemical oxidants, hydrogen peroxide, mixed concentrated HNO(3)/H(2)SO(4) and acidic KMnO(4) solution. The influences on the properties of CNTs were systematically investigated, such as the structure, the kinds and the contents of the formed surface oxygen-containing functional groups, the pH(PZC) values and the surface hydrophilicity using XRD, HREM, FTIR and chemical titration. The results show that the kinds and the contents of the surface oxygen-containing groups are dependent on the functionalization methods. The formation of the oxygen-containing groups can decrease pH(PZC) values and improve surface hydrophilicity of CNTs. The dispersion of the supported Pd-Pt particles on the functionalized CNTs and their catalytic activity in the profile reaction of naphthalene hydrogenation to tetralin are both promoted due to the presence of these oxygen-containing groups.  相似文献   

19.
Semiconducting single-wall carbon nanotubes (SWCNTs) having large diameters (d(t) > 1.3 nm) are successfully extracted in toluene by fluorene-based polymers. In particular, poly(9,9-dioctylfluorene-alt-benzothiadiazole) shows excellent selectivity for (15,4) SWCNTs. Although the importance of structural matching between the fluorene backbone and the tube surface has already been discussed, the present photoluminescence studies reveal that matching the energy levels between fluorene-based polymers and SWCNTs is crucial for selective nanotube extractions.  相似文献   

20.
The physisorption of radiolabeled (125)I(-) ions from aqueous solution and the Brunauer-Emmett-Teller (BET) surface areas of various carbonaceous materials [HiPco single-wall carbon nanotubes (SWNTs), F-SWNTs, cut SWNTs, charcoal, graphite, F-graphite and C(60)] have been measured and compared. By far, cut SWNTs (mainly 20-50 nm lengths) displayed the largest surface area of the materials (1180 m(2).g(-1)), being approximately double that of uncut SWNT and charcoal. At low concentrations of (125)I(-), nearly all of the (125)I(-) was adsorbed from aqueous solution within 1 min at room temperature by the cut SWNTs, uncut SWNTs, and charcoal; the other materials showed much less adsorption under the same conditions. Once adsorbed, the (125)I(-) wash-off rate by pure water was highly variable but was especially slow for cut SWNTs (t(1/2) approximately 2720 h) compared to the other materials; wash-off of (125)I(-) by an aqueous H(2)O(2) solution was even slower (t(1/2) approximately 14 300 h). Taken together, these data demonstrate the greatly increased surface area and dramatically enhanced retention properties of cut SWNTs over uncut SWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号