首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) with molecular masses higher than 300 u were analysed using LC-atmospheric pressure chemical ionization (APCI) MS in extracts of environmental samples from Hamilton, Canada including zebra mussels from Hamilton Harbour, air particulate and coal tar. The LC-APCI-MS profiles of three molecular mass classes of PAHs (326 u, 350 u and 374 u) were compared to identify potential sources of PAH contamination in Hamilton Harbour. The Hamilton air particulate profile was also compared with an urban air reference standard (NIST SRM 1649) from Washington, DC, USA. Profiles of all extracts were similar and suggested an environmental predominance of PAHs within the three isomeric molecular mass classes studied. However, PAHs of molecular mass 326 u and 350 u were detected in extracts of coal tar and zebra mussels from Hamilton Harbour but were not detected in Hamilton air. These results indicated that some high-molecular-mass PAHs may be characteristic of contamination by coal tar.  相似文献   

2.
In this article, we report a high-performance liquid chromatography-particle beam-mass spectrometric (HPLC-PB-MS) method for the determination of polycyclic aromatic hydrocarbons (PAHs). The PB interface consists of a concentric ultrasonic nebulizer with temperature-controlled desolvation chamber and a three-stage momentum separator. The HPLCPB-MS method showed greater sensitivity for PAHs with molecular weights above 178 than for those PAHs with molecular weights below 178. The percent relative standard deviations for the determination of 0.5 ng chrysene, 1.0 ng dibenzo[a,h]anthracene, 1.0 ng benzo[g,h,i]perylene, and 2.5 ng coronene were 20%, 2.5%, 13.7%, and 6%, respectively. The detection limits at signal/noise = 3 were 0.2 ng for chrysene, 1.0 ng for dibenzo[a,h]anthracene, 0.5 ng for benzo[g,h,i]perylene, and 1.5 ng for coronene.  相似文献   

3.
Manual solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) is applied for the determination of polycyclic aromatic hydrocarbons (PAHs) from natural matrix through a distilled water medium. Seven of the 16 PAH standards (naphthalene, acenaphthene, fluorene, anthracene, fluoranthene, pyrene, benzo[a]anthracene) are spiked on a marine muddy sediment. The samples, containing PAHs in the range of 10-20 ppm, are then aged at room temperature more than 10 days before analysis. The influence of the matrix, SPME adsorption time, pH, salt content, and SPME adsorption temperature are investigated. The reproducibility of the technique is less than 13% (RDS) for the first 6 considered PAHs and 28% (RDS) for benzo(a)anthracene with a fiber containing a 100-micron poly dimethylsiloxane coating. Linearity extended in the range of 5-50 picograms for PAHs direct injection, 5-70 picograms for PAHs in water, and 1-170 picograms for PAHs in sediment. The detection limit is estimated less than 1 microgram/kg of dry sample for the first 6 considered PAHs in sediment and 1.5 micrograms/kg of dry sample for benzo(a)anthracene using the selected ion monitoring mode in GC-MS. The recoveries of the considered PAHs are evaluated.  相似文献   

4.
Delhomme O  Millet M  Herckes P 《Talanta》2008,74(4):703-710
In this paper, the development of an analytical method using liquid chromatography-tandem mass spectrometry (LC-MS-MS) with atmospheric pressure chemical ionization (APCI) for the determination of 17 oxygenated polycyclic aromatic hydrocarbons (OPAH) is described. These OPAH include ketones, pyrones and diketones. The APCI interface parameters have been optimized for maximum sensitivity. Positive ion mode was proved to be most sensitive for ketones and pyrones while negative ion mode gave better detection limits for target diketones. The detection limits of the method ranged from less than 1.20microg L(-1) for several OPAH solutions (between 0.10 and 0.70microg L(-1) for positive mode and between of 0.19 and 1.20microg L(-1) for negative mode). The analytical method was applied particulate matter (PM(2.5)) samples collected over 24-48h periods between March 2005 and June 2005 in Tempe (Arizona, USA). Before analysis aerosol samples were solvent extracted and concentrated to a final volume of 1mL of methanol. OPAH concentrations observed for this urban site ranged from 0.22 to 3.60ngm(-3).  相似文献   

5.
6.
The use of electron spin resonance spectrometry with a modern instrument is described for the determination of polynuclear aromatic hydrocarbons (PAHs) down to nanogram levels, after adsorption on calcined silica/alumina. A single PAH or the total number of moles of PAHs can be determined. Implication for liquid chromatography are discussed.  相似文献   

7.
In this paper we report the scale-up of the purification of poly(ethylene glycol) (PEG) derivatives of the growth hormone-releasing factor 1-29, from laboratory scale (100 mg of bulk starting material) to larger scale (3 g of bulk), through the use of a cation-exchange TSK-SP-5PW chromatographic column. A one-step purification process capable of purifying large amounts of mono-PEGylated GRF species from the crude reaction mixture was developed. A simple, straightforward stepwise gradient elution separation was developed at laboratory scale and then scaled up with a larger column packed with a chromatographic resin with the same chemistry which maintained the laboratory-scale separation profile. Active material recovery and material purity remained constant through the scale-up from the 13-microm stationary phase to the 25-microm larger column. Overall, the gram GRF equivalent/batch process scale showed to be quite reproducible, and could be considered as a good platform for scale up to production scale.  相似文献   

8.
A solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS) analytical method for the simultaneous separation and determination of 16 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples has been developed, based on the sorption of target analytes on a selectively sorptive fibre and subsequent desorption of analytes directly into GC-MS. The influence of various parameters on PAH extraction efficiency by SPME was thoroughly studied. Results show that the fibre exposure time and the use of agitation during exposure are critical in enhancing SPME performance. The presence of colloidal organic matter (as simulated by humic acid) in water samples is shown to significantly reduce the extraction efficiency, suggesting that SPME primarily extracts the truly dissolved compounds. This offers the significant advantage of allowing the differentiation between freely available dissolved compounds and those associated with humic material and potentially biologically unavailable. The method showed good linearity up to 10 μg/l. The reproducibility of the measurements expressed as relative standard deviation (R.S.D.) was generally <20%. The method developed was then applied to extract PAHs from sediment porewater samples collected from the Mersey Estuary, UK. Total PAH concentrations in porewater were found to vary between 95 and 742 ng/l with two to four ring PAHs predominating. Results suggest that SPME has the potential to accurately determine the dissolved concentrations of PAHs in sediment porewater.  相似文献   

9.
Zheng L  Chen H  Chen J  Feng Z  Gao S  Zhou J 《色谱》2011,29(12):1173-1178
建立了一种简单、准确的测定热塑性弹性体中16种多环芳烃(PAHs)的气相色谱-质谱(GC-MS)方法。考察了样品制备、萃取溶剂、萃取方法、时间以及温度对厂家制备的阳性热塑性弹性体样品中PAHs提取效率的影响,确定了萃取条件和方法。样品经甲苯超声萃取、浓缩后用环己烷溶解、二甲亚砜液液萃取净化后采用GC-MS进行分析,内标法定量。通过对不同材质阳性热塑性弹性体样品的加标回收、精密度试验等对建立的方法进行评价,16种PAHs的平均回收率为70%~117%,精密度为0.2%~10.8%。该方法适合于热塑性弹性体中PAHs的测定。  相似文献   

10.
This study describes the determination of polycyclic aromatic hydrocarbons (PAHs) in water using high-performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD). Because individual PAHs are generally present in water only at trace levels, a sensitive and accurate determination technique is essential. The separation and detection of five PAHs were run completely within 25 min by the HPLC/FLD system with an analytical C18 column, a fluorescence detection, and acetonitrile-water gradient elution. Calibration graphs were linear with very good correlation coefficients (r > 0.9998), and the detection limits were in the range of 2-6 ng/l for five PAHs. Solid phase microextraction (SPME) was performed for sample pretreatment prior to HPLC-FLD determination, and the governing parameters were investigated. Compared to conventional methods, SPME has high recovery, saves considerable time, and reduces solvents waste. The extraction efficiencies of five PAHs were above 88% and the extraction times were 35 min in one pretreatment procedure. One particular discovery is that 1.5 M sodium monochloroactate (ClCH2COONa) can improve the extraction yield of PAH compounds more than other inorganic salts. The SPME-HPLC-FLD technique provides a relatively simple, convenient, practical procedure, which was here successfully applied to determine five PAHs in water from authentic water samples.  相似文献   

11.
Summary The described identification and determination of polycyclic aromatic hydrocarbons (PAH) in Diesel soot is based on a class-fractionation using an open Al2O3-column and a following separation on a reversed-phase HPLC-column with post-chromatographic derivatization. The optimized analysis has been applied to the determination of PAH in soots from different engines such as locomotives and motor vehicles by variation of the fuel additives and different Diesel/water emulsions. The results obtained by locomotives show that a special Diesel/water emulsion emits a minor amount of mutagenic and cancerogenic polycyclic aromatic hydrocarbons, whereas the emission of the comparatively harmless compounds like phenanthrene and benzo(h)quinoline increases.  相似文献   

12.
超高效液相色谱法检测土壤中的多环芳烃   总被引:6,自引:1,他引:6  
陈皓  刘颖  刘海玲  袁园  肖乾芬 《色谱》2008,26(6):769-711
采用二极管阵列(PDA)检测器,建立了超高效液相色谱(UPLC)定性定量分析土壤中16种多环芳烃(PAHs)的方法。并将该方法与传统高效液相色谱(HPLC)的分析性能进行了详细的比较。研究结果表明,采用UPLC法分析16种PAHs具有分析速度快(13.5 min)、检出限低(2~20 pg)、灵敏度高等优点。  相似文献   

13.
14.
A rapid liquid chromatography-atmospheric pressure photoionization mass spectrometry (LC-APPI-MS) method was developed for the determination of ergosterol in wheat grains. The effects of the dopants acetone, toluene and anisole on the ionization efficiency were studied. To identify the predominant ions, APPI-MS-MS studies were performed. Different LC and MS parameters were optimized to obtain maximum sensitivity. The effects of the mobile phase composition and of the flow rate were investigated. Additionally, the effects of the nebulizer gas pressure, the drying gas flow, the vaporizer temperature, the fragmentor voltage and the capillary voltage on the ionization efficiency were evaluated. The calibration curve exhibited good linearity and reproducibility. The detection limit (S/N=3) was 0.15 ng on column, which allows the determination of ergosterol in wheat at a concentration as low as 0.12 microg/g. Twenty wheat varieties artificially infected with Fusarium graminearum were investigated by this method.  相似文献   

15.
气相色谱质谱法测定化妆品中9种多环芳烃   总被引:1,自引:0,他引:1  
建立了气相色谱质谱法测定化妆品中9种多环芳烃的分析方法。化妆品中的萘、苯并[a]蒽、、苯并[b]荧蒽、苯并[j]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘、二苯并[a,h]蒽等9种多环芳烃用甲醇超声提取后,用环己烷液-液萃取后浓缩,经硅胶-中性氧化铝柱净化后,采用气相色谱-质谱测定。多环芳烃浓度在0.05~2 mg/L范围内,质量浓度与其峰面积呈良好的线性关系。在低、中、高3个添加水平下,9种多环芳烃化合物的平均回收率为81.6%~100.2%,相对标准偏差为1.3%~5.8%。方法可用于化妆品中多环芳烃的检测。  相似文献   

16.
An ultrasound-assisted emulsification-microextraction (USAEME) procedure was developed for the extraction of US EPA 16 polycyclic aromatic hydrocarbons (PAHs) in 10 mL of water samples, with subsequent determination by gas chromatography-mass spectrometry (GC-MS). After determination of the most suitable solvent and solvent volume, several other parameters (i.e., extraction time, centrifugation time and ionic strength of the sample) were optimized using a 23 factorial experimental design. Limits of detection ranged from 0.001 to 0.036 μg L−1. The developed procedure was applied to fortified distilled water with different fortification levels (0.5, 2 and 5 μg L−1). Recoveries were over 92% and relative standard deviations of the recoveries were below 8%. The efficiency of the USAEME was compared with traditional liquid-liquid extraction (LLE) and solid-phase extraction on real water samples (i.e., tap water, well water and surface (lake) water as well as domestic and industrial wastewaters). The USAEME showed comparable efficiencies especially with LLE. The developed USAEME was demonstrated to be robust, viable, simple, rapid and easy to use for the determination of PAHs in water samples by GC-MS.  相似文献   

17.
Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) using silver nitrate as a post-column reagent has been used for the determination of 10 polycyclic aromatic hydrocarbons (PAHs) in river water. In this method, after all the PAHs were separated by reversed-phase liquid chromatography, analytes formed complexes with silver cation by mixing with silver nitrate solution. The complexes then transfer the molecular ion, [M]+, of the PAHs by charge transfer using in source collision-induced dissociation. The positive ion ESI mass spectra of all PAHs tested in this study showed [M]+ as the base peak and abundant [M+Ag]+, [2M+Ag]- with very weak or no [2M+Ag]+. For the sample extraction, several solid-phase extraction parameters using the blue-chitin column were optimized. The limits of detection (S/N=3) of all PAHs for the spiked river water sample ranged from 0.001 to 0.03 ng/ml, and the detector responses were linear up to I ng/ml (correlation coefficients > or =0.0998). Repeatability and reproducibility were in the range from 4.3 to 6.8% and from 6.2 to 9.5%, respectively.  相似文献   

18.
气质联用仪法测定奶粉中多环芳烃   总被引:4,自引:0,他引:4  
研究了奶粉中多环芳烃的气相色谱/质谱(GC/MS)测定方法. 样品经甲醇-KOH皂化后用甲苯提取, 提取液经微孔滤膜过滤后用气相色谱质谱仪测定其含量, 外标法定量. 结果16种PAHs的回收率范围为92.0%~106%;RSD为2.2%~4.7%. 方法能同时分离16种PAHs, 适合于奶粉中多环芳烃的分析测定.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous com- pounds of concern to the U.S. EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrument performance was evaluated for 16 PAHs in the molecular weight range 300–450 u. The PAHs were separated by reverse-phase high-performance liquid chromatography via a polymeric octadecylsilica (C-18) packing and gradient elution with methanol-tetrahydrofuran. On-column instrument detection limits, as measured by selected ion monitoring on the singly charged molecular ion of each PAH, were found to be 0.15–0.60 ng for PAHs with molecular weights up to 352 u and 2–4 ng for PAHs with molecular weights greater than 352 u. Instrument response was generally linear for PAHs with molecular weights 300–352 u and generally nonlinear for PAHs with molecular weights greater than 352 u. The PB electron impact mass spectra of the PAHs were found to vary with the ion distribution ratio of the singly charged molecular ion to the doubly charged molecular ion, dependent on molecular weight, ion source temperature, and concentration. Analysis by PB LC-MS was applied to extracts of PAH-spiked soil and a PAH-contaminated soil from the Pacific Northwest. Target analyte concentrations in the PAH-contaminated soil ranged from 0.85 to 84 µg/g. Quantitative estimates for nontarget PAHs also were determined. Analysis of a second soil extract from a hazardous waste site in the northeast part of the United States displayed isomeric patterns of high-molecular-weight PAHs similar to those of the Pacific Northwest extract.  相似文献   

20.
An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号